• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 13
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 78
  • 78
  • 23
  • 16
  • 13
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Estudo dos fenômenos de transporte em cromatografia através da aplicação de modelos de rede e estocásticos / Study of transport phenomena in chromatography by application of network and stochastic models

Flávio de Matos Silva 17 May 2011 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / O estudo dos diferentes fenômenos de separação tem sido cada vez mais importante para os diferentes ramos da indústria e ciência. Devido à grande capacidade computacional atual, é possível modelar e analisar os fenômenos cromatográficos a nível microscópico. Os modelos de rede vêm sendo cada vez mais utilizados, para representar processos de separação por cromatografia, pois através destes pode-se representar os aspectos topológicos e morfológicos dos diferentes materiais adsorventes disponíveis no mercado. Neste trabalho visamos o desenvolvimento de um modelo de rede tridimensional para representação de uma coluna cromatográfica, a nível microscópico, onde serão modelados os fenômenos de adsorção, dessorção e dispersão axial através de um método estocástico. Também foram utilizadas diferentes abordagens com relação ao impedimento estérico Os resultados obtidos foram comparados a resultados experimentais. Depois é utilizado um modelo de rede bidimensional para representar um sistema de adsorção do tipo batelada, mantendo-se a modelagem dos fenômenos de adsorção e dessorção, e comparados a sistemas reais posteriormente. Em ambos os sistemas modelados foram analisada as constantes de equilíbrio, parâmetro fundamental nos sistemas de adsorção, e por fim foram obtidas e analisadas isotermas de adsorção. Foi possível concluir que, para os modelos de rede, os fenômenos de adsorção e dessorção bastam para obter perfis de saída similares aos vistos experimentalmente, e que o fenômeno da dispersão axial influência menos que os fenômenos cinéticos em questão / The study of different phenomena of separation has been most important for the different areas of industry and science. Due to the large computational available, we can model and analyze the chromatographic phenomena at the microscopic level. The network model has been most used to represent processes of separation by chromatography, because through them we are able represent the topological and morphological aspects of different adsorbent materials available on the market. In this work we aim at studying the dynamics of percolation chromatography through the phenomenology of adsorption, desorption and axial dispersion. In this work we aim to develop a three-dimensional network model representation of a chromatographic column, microscopic level, which will model the phenomena of adsorption, desorption and axial dispersion through a stochastic method. After that, a two-dimensional network model is used to represent a system of adsorption in batch, keeping the modeling of the adsorption / desorption, and then compare to real systems. In both systems modeled are analyzed the equilibrium constant, the basic parameter in the adsorption systems, and at the end are obtained and analyzed adsorption isotherms. We concluded for the network models the phenomena of adsorption and desorption were sufficient to obtain output profiles similar to those seen experimentally, the phenomenon of axial dispersion effect unless the kinetic phenomena in question.
22

Design of intelligent ensembled classifiers combination methods

Alani, Shayma January 2015 (has links)
Classifier ensembling research has been one of the most active areas of machine learning for a long period of time. The main aim of generating combined classifier ensembles is to improve the prediction accuracy in comparison to using an individual classifier. A combined classifiers ensemble can improve the prediction results by compensating for the individual classifier weaknesses in certain areas and benefiting from better accuracy of the other ensembles in the same area. In this thesis, different algorithms are proposed for designing classifier ensemble combiners. The existing methods such as averaging, voting, weighted average, and optimised weighted method does not increase the accuracy of the combiner in comparison to the proposed advanced methods such as genetic programming and the coalition method. The different methods are studied in detail and analysed using different databases. The aim is to increase the accuracy of the combiner in comparison to the standard stand-alone classifiers. The proposed methods are based on generating a combiner formula using genetic programming, while the coalition is based on estimating the diversity of the classifiers such that a coalition is generated with better prediction accuracy. Standard accuracy measures are used, namely accuracy, sensitivity, specificity and area under the curve, in addition to training error accuracies such as the mean square error. The combiner methods are compared empirically with several stand-alone classifiers using neural network algorithms. Different types of neural network topologies are used to generate different models. Experimental results show that the combiner algorithms are superior in creating the most diverse and accurate classifier ensembles. Ensembles of the same models are generated to boost the accuracy of a single classifier type. An ensemble of 10 models of different initial weights is used to improve the accuracy. Experiments show a significant improvement over a single model classifier. Finally, two combining methods are studied, namely the genetic programming and coalition combination methods. The genetic programming algorithm is used to generate a formula for the classifiers’ combinations, while the coalition method is based on a simple algorithm that assigns linear combination weights based on the consensus theory. Experimental results of the same databases demonstrate the effectiveness of the proposed methods compared to conventional combining methods. The results show that the coalition method is better than genetic programming.
23

A Neural Network Configuration Compiler Based on the Adaptrode Neuronal Model

McMichael, Lonny D. (Lonny Dean) 12 1900 (has links)
A useful compiler has been designed that takes a high level neural network specification and constructs a low level configuration file explicitly specifying all network parameters and connections. The neural network model for which this compiler was designed is the adaptrode neuronal model, and the configuration file created can be used by the Adnet simulation engine to perform network experiments. The specification language is very flexible and provides a general framework from which almost any network wiring configuration may be created. While the compiler was created for the specialized adaptrode model, the wiring specification algorithms could also be used to specify the connections in other types of networks.
24

Automated Essay Scoring for English Using Different Neural Network Models for Text Classification

Deng, Xindi January 2021 (has links)
Written skills are an essential evaluation criterion for a student’s creativity, knowledge, and intellect. Consequently, academic writing is a common part of university and college admissions applications, standardized tests, and classroom assessments. However, the task for teachers is quite daunting when it comes to essay scoring. Then Automated Essay Scoring may be a helpful tool in the decision-making by the teacher.  There have been many successful models with supervised or unsupervised machine learning algorithms in the eld of Automated Essay Scoring. This thesis work makes a comparative study among various neural network models with supervised machine learning algorithms and different linguistic feature combinations. It also proves that the same linguistic features are applicable to more than one language.  The models studied in this experiment include TextCNN, TextRNN_LSTM, Tex- tRNN_GRU, and TextRCNN trained with the essays from the Automated Student Assessment Prize (ASAP) from Kaggle competitions. Each essay is represented with linguistic features measuring linguistic complexity. Those features are divided into four groups: count-based, morphological, syntactic, and lexical features, and the four groups of features can form a total of 14 combinations.  The models are evaluated via three measurements: Accuracy, F1 score, and Quadratic Weighted Kappa. The experimental results show that models trained only with count-based features outperform the models trained using other feature combinations. In addition, TextRNN_LSTM performs best, with an accuracy of 54.79%, an F1 score of 0.55, and a Quadratic Weighted Kappa of 0.59, which beats the statistically-based baseline models.
25

Network Models for Capturing Molecular Feature and Predicting Drug Target for Various Cancers

Liu, Enze 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Network-based modeling and analysis have been widely used for capturing molecular trajectories of cellular processes. For complex diseases like cancers, if we can utilize network models to capture adequate features, we can gain a better insight of the mechanism of cancers, which will further facilitate the identification of molecular vulnerabilities and the development targeted therapy. Based on this rationale, we conducted the following four studies: A novel algorithm ‘FFBN’ is developed for reconstructing directional regulatory networks (DEGs) from tissue expression data to identify molecular features. ‘FFBN’ shows unique capability of fast and accurately reconstructing genome-wide DEGs compared to existing methods. FFBN is further used to capture molecular features among liver metastasis, primary liver cancers and primary colon cancers. Comparisons among these features lead to new understandings of how liver metastasis is similar to its primary and distant cancers. ‘SCN’ is a novel algorithm that incorporates multiple types of omics data to reconstruct functional networks for not only revealing molecular vulnerabilities but also predicting drug targets on top of that. The molecular vulnerabilities are discovered via tissue-specific networks and drug targets are predicted via cell-line specific networks. SCN is tested on primary pancreatic cancers and the predictions coincide with current treatment plans. ‘SCN website’ is a web application of ‘SCN’ algorithm. It allows users to easily submit their own data and get predictions online. Meanwhile the predictions are displayed along with network graphs and survival curves. ‘DSCN’ is a novel algorithm derived from ‘SCN’. Instead of predicting single targets like ‘SCN’, ‘DSCN’ applies a novel approach for predicting target combinations using multiple omics data and network models. In conclusion, our studies revealed how genes regulate each other in the form of networks and how these networks can be used for unveiling cancer-related biological processes. Our algorithms and website facilitate capturing molecular features for cancers and predicting novel drug targets.
26

Study of Some Biologically Relevant Dynamical System Models: (In)stability Regions of Cyclic Solutions in Cell Cycle Population Structure Model Under Negative Feedback and Random Connectivities in Multitype Neuronal Network Models

KC, Rabi January 2020 (has links)
No description available.
27

General queueing network models for computer system performance analysis. A maximum entropy method of analysis and aggregation of general queueing network models with application to computer systems.

El-Affendi, Mohamed A. January 1983 (has links)
In this study the maximum entropy formalism [JAYN 57] is suggested as an alternative theory for general queueing systems of computer performance analysis. The motivation is to overcome some of the problems arising in this field and to extend the scope of the results derived in the context of Markovian queueing theory. For the M/G/l model a unique maximum entropy solution., satisfying locALl balance is derived independent of any assumptions about the service time distribution. However, it is shown that this solution is identical to the steady state solution of the underlying Marko-v process when the service time distribution is of the generalised exponential (CE) type. (The GE-type distribution is a mixture of an exponential term and a unit impulse function at the origin). For the G/M/1 the maximum entropy solution is identical in form to that of the underlying Markov process, but a GE-type distribution still produces the maximum overall similar distributions. For the GIG11 model there are three main achievements: first, the spectral methods are extended to give exaft formulae for the average number of customers in the system for any G/G/l with rational Laplace transform. Previously, these results are obtainable only through simulation and approximation methods. (ii) secondly, a maximum entropy model is developed and used to obtain unique solutions for some types of the G/G/l. It is also discussed how these solutions can be related to the corresponding stochastic processes. (iii) the importance of the G/GE/l and the GE/GE/l for the analysis of general networks is discussed and some flow processes for these systems are characterised. For general queueing networks it is shown that the maximum entropy solution is a product of the maximum entropy solutions of the individual nodes. Accordingly, existing computational algorithms are extended to cover general networks with FCFS disciplines. Some implementations are suggested and a flow algorithm is derived. Finally, these results are iised to improve existing aggregation methods. In addition, the study includes a number of examples, comparisons, surveys, useful comments and conclusions.
28

Decomposition of general queueing network models. An investigation into the implementation of hierarchical decomposition schemes of general closed queueing network models using the principle of minimum relative entropy subject to fully decomposable constraints.

Tomaras, Panagiotis J. January 1989 (has links)
Decomposition methods based on the hierarchical partitioning of the state space of queueing network models offer powerful evaluation tools for the performance analysis of computer systems and communication networks. These methods being conventionally implemented capture the exact solution of separable queueing network models but their credibility differs when applied to general queueing networks. This thesis provides a universal information theoretic framework for the implementation of hierarchical decomposition schemes, based on the principle of minimum relative entropy given fully decomposable subset and aggregate utilization, mean queue length and flow-balance constraints. This principle is used, in conjuction with asymptotic connections to infinite capacity queues, to derive new closed form approximations for the conditional and marginal state probabilities of general queueing network models. The minimum relative entropy solutions are implemented iteratively at each decomposition level involving the generalized exponential (GE) distributional model in approximating the general service and asymptotic flow processes in the network. It is shown that the minimum relative entropy joint state probability, subject to mean queue length and flow-balance constraints, is identical to the exact product-form solution obtained as if the network was separable. An investigation into the effect of different couplings of the resource units on the relative accuracy of the approximation is carried out, based on an extensive experimentation. The credibility of the method is demonstrated with some illustrative examples involving first-come-first-served general queueing networks with single and multiple servers and favourable comparisons against exact solutions and other approximations are made.
29

Exploring Neural Network Models with Hierarchical Memories and Their Use in Modeling Biological Systems

Pusuluri, Sai Teja 16 June 2017 (has links)
No description available.
30

Essays on Party System Institutionalization in East-Central Europe

Morgan, Jason William 18 September 2015 (has links)
No description available.

Page generated in 0.0441 seconds