• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 8
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 35
  • 33
  • 20
  • 19
  • 15
  • 15
  • 12
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Cooperative design of a cross-age tutoring system based on a social networking platform

Chimbo, Bester 11 1900 (has links)
In South Africa, many young children from poor social and economic backgrounds are cared for at home by parents or guardians who are themselves illiterate. This leads to poor educational outcomes later in life. Yet there are many privileged teenagers with access to mobile technologies who spend a greater portion of their spare time interacting on ubiquitous social media platforms. This presents an opportunity whereby the poor educational outcomes referred to previously could be addressed by applying a technology solution providing social media-based homework support by privileged teenagers to underprivileged younger children. However, most applications designed for use by children are designed by adults, with little understanding of the user requirements of the target end users. This research explores the following question: How can a cross-age tutoring system be designed for implementation on a social networking platform to support numeracy and literacy skill acquisition? The main contribution of this research was the definition of the Cooperative design by Children for Children (CD2C) Design Framework, a blueprint of how a cross-age tutoring system could be co-designed by children of different age groups and life circumstances. The CD2C Design Framework was derived as an abstraction of the second contribution of this research, the TitanTutor, an artifact designed using co-operative inquiry method and the Design Science Research approach. The third novelty of this research was contribution to Design Science Research theory, with the addition of new theory that states that cooperative design by children from different age groups and life circumstances is tempered by socio-environmental context and power relations between the co-design partners. This work provided important contributions to researchers in the areas of Cooperative Inquiry (CI), Human Computer Interaction (HCI), and Design Science Research (DSR). Future researchers could extend the CD2C Design Framework to make it even more abstract, thereby making it universally applicable to any co-design scenario. / Computing / Ph. D. (Information Systems)
52

Design of survivable networks with bounded-length paths / Conception de réseaux fiables à chemins de longueur bornée

Huygens, David 30 September 2005 (has links)
In this thesis, we consider the k-edge connected L-hop-constrained network design problem. Given a weighted graph G=(N,E), a set D of pairs of terminal nodes, and two integers k,L > 1, it consists in finding in G the minimum cost subgraph containing at least k edge-disjoint paths of at most L edges between each pair in D. This problem is of great interest in today's telecommunication industry, where highly survivable networks need to be constructed.<p><p>We first study the particular case where the set of demands D is reduced to a single pair {s,t}. We propose an integer programming formulation for the problem, which consists in the st-cut and trivial inequalities, along with the so-called L-st-path-cut inequalities. We show that these three classes of inequalities completely describe the associated polytope when k=2 and L=2 or 3, and give necessary and sufficient conditions for them to be facet-defining. We also consider the dominant of the associated polytope, and discuss how the previous inequalities can be separated in polynomial time.<p><p>We then extend the complete and minimal description obtained above to any number k of required edge-disjoint L-st-paths, but when L=2 only. We devise a cutting plane algorithm to solve the problem, using the previous polynomial separations, and present some computational results.<p><p>After that, we consider the case where there is more than one demand in D. We first show that the problem is strongly NP-hard, for all L fixed, even when all the demands in D have one root node in common. For k=2 and L=2,3, we give an integer programming formulation, based on the previous constraints written for all pairs {s,t} in D. We then proceed by giving several new classes of facet-defining inequalities, valid for the problem in general, but more adapted to the rooted case. We propose separation procedures for these inequalities, which are embedded within a Branch-and-Cut algorithm to solve the problem when L=2,3. Extensive computational results from it are given and analyzed for both random and real instances.<p><p>Since those results appear less satisfactory in the case of arbitrary demands (non necessarily rooted), we present additional families of valid inequalites in that situation. Again, separation procedures are devised for them, and added to our previous Branch-and-Cut algorithm, in order to see the practical improvement granted by them.<p><p>Finally, we study the problem for greater values of L. In particular, when L=4, we propose new families of constraints for the problem of finding a subgraph that contains at least two L-st-paths either node-disjoint, or edge-disjoint. Using these, we obtain an integer programming formulation in the space of the design variables for each case.<p><p>------------------------------------------------<p><p>Dans cette thèse, nous considérons le problème de conception de réseau k-arete connexe à chemins L-bornés. Etant donné un graphe pondéré G=(N,E), un ensemble D de paires de noeuds terminaux, et deux entiers k,L > 1, ce problème consiste à trouver, dans G, un sous-graphe de cout minimum tel que, entre chaque paire dans D, il existe au moins k chemins arete-disjoints de longueur au plus L. Ce problème est d'un grand intéret dans l'industrie des télécommunications, où des réseaux hautement fiables doivent etre construits.<p><p>Nous étudions tout d'abord le cas particulier où l'ensemble des demandes D est réduit à une seule paire de noeuds. Nous proposons une formulation du problème sous forme de programme linéaire en nombres entiers, laquelle consiste en les inégalités triviales et de coupe, ainsi que les inégalités dites de L-chemin-coupe. Nous montrons que ces trois types d'inégalités décrivent complètement le polytope associé lorsque k=2 et L=2,3, et donnons des conditions nécessaires et suffisantes pour que celles-ci en définissent des facettes. Nous considérons également le dominant du polytope associé et discutons de la séparation polynomiale des trois classes précédentes.<p><p>Nous étendons alors cette description complète et minimale à tout nombre k de chemins arete-disjoints de longueur au plus 2. De plus, nous proposons un algorithme de plans coupants utilisant les précédentes séparations polynomiales, et en présentons quelques résultats calculatoires, pour tout k>1 et L=2,3.<p><p>Nous considérons ensuite le cas où plusieurs demandes se trouvent dans D. Nous montrons d'abord que le problème est fortement NP-dur, pour tout L fixé et ce, meme si les demandes sont toutes enracinées en un noeud. Pour k=2 et L=2,3, nous donnons une formulation du problème sous forme de programme linéaire en nombres entiers. Nous proposons également de nouvelles classes d'inégalités valides, pour lesquelles nous réalisons une étude faciale. Celles-ci sont alors séparées dans le cadre d'un algorithme de coupes et branchements pour résoudre des instances aléatoires et réelles du problème.<p><p>Enfin, nous étudions le problème pour de plus grandes valeurs de L. En particulier, lorsque L=4, nous donnons de nouvelles familles de contraintes pour le problème consistant à déterminer un sous-graphe contenant entre deux noeuds fixés au moins deux chemins de longueur au plus 4, que ceux-ci doivent etre arete-disjoints ou noeud-disjoints. Grace à ces dernières, nous parvenons à donner une formulation naturelle du problème dans chacun de ces deux cas. <p> / Doctorat en sciences, Spécialisation Informatique / info:eu-repo/semantics/nonPublished
53

Reducing handoff latency in proxy mobile IPv6

Vojini, Sumith Dev 21 May 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mobile IP though allows mobility features to a node it suffers from signaling Latencies which are mainly incurred due to the fact that the MN itself is involved in the handover process. To overcome this problem proxy mobile IPv6(PMIPv6) was defined where the mobility signaling is taken care of by a proxy server while keeping track of the MN's movement. PMIPv6 has considerably reduced the handover latency but the demand for real time applications over the network has increased tremendously due to recent explosion of the cloud era. My thesis focuses on increasing the L3 handoff signaling efficiency by reducing the latency. This is achieved by our idea to do both the AAA authentication as well as the LMA registration in PMIPv6 at the same time. The simulation results show that our proposed approach perform better than the current PMIPv6 L3 handover signaling reducing the latency as well as packet loss.
54

Secure Digital Provenance: Challenges and a New Design

Rangwala, Mohammed M. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Derived from the field of art curation, digital provenance is an unforgeable record of a digital object's chain of successive custody and sequence of operations performed on the object. It plays an important role in accessing the trustworthiness of the object, verifying its reliability and conducting audit trails of its lineage. Digital provenance forms an immutable directed acyclic graph (DAG) structure. Since history of an object cannot be changed, once a provenance chain has been created it must be protected in order to guarantee its reliability. Provenance can face attacks against the integrity of records and the confidentiality of user information, making security an important trait required for digital provenance. The digital object and its associated provenance can have different security requirements, and this makes the security of provenance different from that of traditional data. Research on digital provenance has primarily focused on provenance generation, storage and management frameworks in different fields. Security of digital provenance has also gained attention in recent years, particularly as more and more data is migrated in cloud environments which are distributed and are not under the complete control of data owners. However, there still lacks a viable secure digital provenance scheme which can provide comprehensive security for digital provenance, particularly for generic and dynamic ones. In this work, we address two important aspects of secure digital provenance that have not been investigated thoroughly in existing works: 1) capturing the DAG structure of provenance and 2) supporting dynamic information sharing. We propose a scheme that uses signature-based mutual agreements between successive users to clearly delineate the transition of responsibility of the digital object as it is passed along the chain of users. In addition to preserving the properties of confidentiality, immutability and availability for a digital provenance chain, it supports the representation of DAG structures of provenance. Our scheme supports dynamic information sharing scenarios where the sequence of users who have custody of the document is not predetermined. Security analysis and empirical results indicate that our scheme improves the security of the typical secure provenance schemes with comparable performance.

Page generated in 0.0324 seconds