• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 8
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 35
  • 33
  • 20
  • 19
  • 15
  • 15
  • 12
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Smart Broadcast Protocol Design For Vehicular Ad hoc Networks

Unknown Date (has links)
Multi-hop broadcast is one of the main approaches to disseminate data in VANET. Therefore, it is important to design a reliable multi-hop broadcast protocol, which satis es both reachability and bandwidth consumption requirements. In a dense network, where vehicles are very close to each other, the number of vehicles needed to rebroadcast the message should be small enough to avoid a broad- cast storm, but large enough to meet the reachability requirement. If the network is sparse, a higher number of vehicles is needed to retransmit to provide a higher reachability level. So, it is obvious that there is a tradeo between reachability and bandwidth consumption. In this work, considering the above mentioned challenges, we design a number of smart broadcast protocols and evaluate their performance in various network den- sity scenarios. We use fuzzy logic technique to determine the quali cation of vehicles to be forwarders, resulting in reachability enhancement. Then we design a band- width e cient fuzzy logic-assisted broadcast protocol which aggressively suppresses the number of retransmissions. We also propose an intelligent hybrid protocol adapts to local network density. In order to avoid packet collisions and enhance reachability, we design a cross layer statistical broadcast protocol, in which the contention window size is adjusted based on the local density information. We look into the multi-hop broadcast problem with an environment based on game theory. In this scenario, vehicles are players and their strategy is either to volunteer and rebroadcast the received message or defect and wait for others to rebroadcast. We introduce a volunteer dilemma game inspired broadcast scheme to estimate the probability of forwarding for the set of potential forwarding vehicles. In this scheme we also introduce a fuzzy logic-based contention window size adjustment system. Finally, based on the estimated spatial distribution of vehicles, we design a transmission range adaptive scheme with a fuzzy logic-assisted contention window size system, in which a bloom lter method is used to mitigate overhead. Extensive experimental work is obtained using simulation tools to evaluate the performance of the proposed schemes. The results con rm the relative advantages of the proposed protocols for di erent density scenarios. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
42

Mechanisms for prolonging network lifetime in wireless sensor networks

Unknown Date (has links)
Sensors are used to monitor and control the physical environment. A Wireless Sen- sor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using hop-by-hop communication. Once a sink receives sensed data, it processes and forwards it to the users. Sensors are usually battery powered and it is hard to recharge them. It will take a limited time before they deplete their energy and become unfunctional. Optimizing energy consumption to prolong network lifetime is an important issue in wireless sensor networks. In mobile sensor networks, sensors can self-propel via springs [14], wheels [20], or they can be attached to transporters, such as robots [20] and vehicles [36]. In static sensor networks with uniform deployment (uniform density), sensors closest to the sink will die first, which will cause uneven energy consumption and limitation of network life- time. In the dissertation, the nonuniform density is studied and analyzed so that the energy consumption within the monitored area is balanced and the network lifetime is prolonged. Several mechanisms are proposed to relocate the sensors after the initial deployment to achieve the desired density while minimizing the total moving cost. Using mobile relays for data gathering is another energy efficient approach. Mobile sensors can be used as ferries, which carry data to the sink for static sensors so that expensive multi-hop communication and long distance communication are reduced. In this thesis, we propose a mobile relay based routing protocol that considers both energy efficiency and data delivery delay. It can be applied to both event-based reporting and periodical report applications. / Another mechanism used to prolong network lifetime is sensor scheduling. One of the major components that consume energy is the radio. One method to conserve energy is to put sensors to sleep mode when they are not actively participating in sensing or data relaying. This dissertation studies sensor scheduling mechanisms for composite event detection. It chooses a set of active sensors to perform sensing and data relaying, and all other sensors go to sleep to save energy. After some time, another set of active sensors is chosen. Thus sensors work alternatively to prolong network lifetime. / by Yinying Yang. / Vita. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
43

Generic Architecture for Power-Aware Routing in Wireless Sensor Networks

Ranjan, Rishi 18 June 2004 (has links)
This work describes the design and implementation of a generic architecture to provide a collective solution for power-aware routing to a wide range of problems in wireless sensor network environments. Power aware-routing is integral to the proposed solutions for different problems. These solutions try to achieve power-efficient routing specific to the problem domain. This can lead to challenging technical problems and deployment barriers when attempting to integrate the solutions. This work extracts various factors to be considered for a range of problems in wireless sensor networks and provides a generic framework for efficient power-aware routing. The architecture aims to relieve researchers from considering power management in their design. We have identified coupling between sources and sinks as the main factor for different design choices for a range of problems. We developed a core-based hierarchical routing framework for efficient power-aware routing that is used to decouple the sources from sinks. The architecture uses only local interaction for scalability and stability in a dynamic network. The architecture provides core-based query forwarding and data dissemination. It uses data aggregation and query aggregation at core nodes to reduce the amount of data to be transmitted. The architecture can be easily extended to incorporate protocols to provide QoS and security to the applications. We use network simulations to evaluate the performance of cluster formation and energy efficiency of the algorithm. Our results show that energy efficiency of the algorithm is better when the transmission range is kept to a minimum for network connectivity as compared to adjustable transmission range.
44

Planejamento e projeto de circuitos secundários de distribuição de energia elétrica por meio de algoritmo busca tabu

Souza, Cezar Henrique de [UNESP] 07 August 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:35Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-08-07Bitstream added on 2014-06-13T18:49:41Z : No. of bitstreams: 1 souza_ch_me_ilha.pdf: 651441 bytes, checksum: b139e90078b1de276ac99f40362c2bf7 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho apresentam-se o desenvolvimento e a implementação de um algoritmo computacional para o problema de planejamento e projeto de circuitos secundários de distribuição de energia elétrica. O problema é formulado como um modelo de Programação Não Linear Inteiro Misto (PNLIM), e para sua solução propõe-se um algoritmo de Busca Tabu (BT). Esta ferramenta permite determinar e avaliar os custos dos elementos que compõem o sistema de distribuição (reforma e/ou construção de redes secundárias), evidenciando sua robustez e precisão. Os algoritmos de cálculo mecânico e definição de estruturas são baseados em normas técnicas para se determinar os postes e estruturas do sistema sob estudo. Os condutores são especificados pelo algoritmo de fluxo de potência trifásico respeitando as condições topológicas, físicas e ambientais. Toda metodologia de cálculo e projeto utilizada neste problema está de acordo com os Procedimentos de Distribuição do Sistema Elétrico Nacional (PRODIST). Para mostrar a eficiência do modelo proposto e da metodologia de planejamento e projeto desenvolvidos, apresentam-se resultados para dois sistemas reais de distribuição com 76 e 54 barras, respectivamente. / In this work, the development and implementation of a computational algorithm for the planning and design of secondary circuits of power distribution systems problem, is presented. The problem is formulated as a Non-linear Integer Mixed Programming (NLIMP) problem; and for its solutions it is proposed a Tabu Search (TS) algorithm. This tool allows determining and evaluating the cost of elements that are part of the distribution system (upgrade and/or construction of secondary networks), showing its robustness and accuracy. Mechanic calculation algorithms and structure definitions are based on technical norms in order to determine poles and structures of the system under study. Conductors are specified by the three-phase power flow algorithm, satisfying topological, physical and environmental conditions. All the calculation and design methodology used in this problem agrees with the Distribution Procedures of the National Electric System (PRODIST). In order to show the efficiency of the proposed model and the developed planning and design methodology, results for to real-life distribution systems, with 76 and 54 buses, are presented.
45

Models and algorithms for network design problems

Poss, Michaël 22 February 2011 (has links)
Dans cette thèse, nous étudions différents modèles, déterministes et stochastiques, pour les problèmes de dimensionnement de réseaux. Nous examinons également le problème du sac-à-dos stochastique ainsi que, plus généralement, les contraintes de capacité en probabilité.<p>\ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
46

Statistical broadcast protocol design for VANET

Unknown Date (has links)
This work presents the development of the Statistical Location-Assisted Broadcast (SLAB) protocol, a multi-hop wireless broadcast protocol designed for vehicular ad-hoc networking (VANET). Vehicular networking is an important emerging application of wireless communications. Data dissemination applications using VANET promote the ability for vehicles to share information with each other and the wide-area network with the goal of improving navigation, fuel consumption, public safety, and entertainment. A critical component of these data dissemination schemes is the multi-hop wireless broadcast protocol. Multi-hop broadcast protocols for these schemes must reliably deliver broadcast packets to vehicles in a geographically bounded region while consuming as little wireless bandwidth as possible. This work contains substantial research results related to development of multi-hop broadcast protocols for VANET, culminating in the design of SLAB. Many preliminary research and development efforts have been required to arrive at SLAB. First, a high-level wireless broadcast simulation tool called WiBDAT is developed. Next, a manual optimization procedure is proposed to create efficient threshold functions for statistical broadcast protocols. This procedure is then employed to design the Distribution-Adaptive Distance with Channel Quality (DADCQ) broadcast protocol, a preliminary cousin of SLAB. DADCQ is highly adaptive to node density, node spatial distribution pattern, and wireless channel quality in realistic VANET scenarios. However, the manual design process used to create DADCQ has a few deficiencies. In response to these problems, an automated design procedure is created that uses a black-box global optimization algorithm to search for efficient threshold functions that are evaluated using WiBDAT. SLAB is finally designed using this procedure. / Expansive simulation results are presented comparing the performance of SLAB to two well-published VANET broadcast protocols, p -persistence and Advanced Adaptive Gossip (AAG), and to DADCQ. The four protocols are evaluated under varying node density and speed on five different road topologies with varying wireless channel fading conditions. The results demonstrate that unlike p-persistence and AAG, SLAB performs well across a very broad range of environmental conditions. Compared to its cousin protocol DADCQ, SLAB achieves similar reachability while using around 30% less wireless bandwidth, highlighting the improvement in the automated design methodology over the manual design. / by Michael J. Slavik. / Thesis (Ph.D.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 200?. Mode of access: World Wide Web.
47

Adaptive Routing Protocols for VANET

Unknown Date (has links)
A Vehicular Ad-hoc Network (VANET) is a wireless ad-hoc network that provides communications among vehicles with on-board units and between vehicles and nearby roadside units. The success of a VANET relies on the ability of a routing protocol to ful ll the throughput and delivery requirements of any applications operating on the network. Currently, most of the proposed VANET routing protocols focus on urban or highway environments. This dissertation addresses the need for an adaptive routing protocol in VANETs which is able to tolerate low and high-density network tra c with little throughput and delay variation. This dissertation proposes three Geographic Ad-hoc On-Demand Distance Vector (GEOADV) protocols. These three GEOADV routing protocols are designed to address the lack of exibility and adaptability in current VANET routing protocols. The rst protocol, GEOADV, is a hybrid geographic routing protocol. The second protocol, GEOADV-P, enhances GEOADV by introducing predictive features. The third protocol, GEOADV-PF improves optimal route selection by utilizing fuzzy logic in addition to GEOADV-P's predictive capabilities. To prove that GEOADV and GEOADV-P are adaptive their performance is demonstrated by both urban and highway simulations. When compared to existing routing protocols, GEOADV and GEOADV-P lead to less average delay and a higher average delivery ratio in various scenarios. These advantages allow GEOADV- P to outperform other routing protocols in low-density networks and prove itself to be an adaptive routing protocol in a VANET environment. GEOADV-PF is introduced to improve GEOADV and GEOADV-P performance in sparser networks. The introduction of fuzzy systems can help with the intrinsic demands for exibility and adaptability necessary for VANETs. An investigation into the impact adaptive beaconing has on the GEOADV protocol is conducted. GEOADV enhanced with an adaptive beacon method is compared against GEOADV with three xed beacon rates. Our simulation results show that the adaptive beaconing scheme is able to reduce routing overhead, increase the average delivery ratio, and decrease the average delay. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
48

Network Design and Routing in Peer-to-Peer and Mobile Ad Hoc Networks

Merugu, Shashidhar 19 July 2005 (has links)
Peer-to-peer networks and mobile ad hoc networks are emerging distributed networks that share several similarities. Fundamental among these similarities is the decentralized role of each participating node to route messages on behalf of other nodes, and thereby, collectively realizing communication between any pair of nodes. Messages are routed on a topology graph that is determined by the peer relationship between nodes. Although routing is fairly straightforward when the topology graph is static, dynamic variations in the peer relationship that often occur in peer-to-peer and mobile ad hoc networks present challenges to routing. In this thesis, we examine the interplay between routing messages and network topology design in two classes of these networks -- unstructured peer-to-peer networks and sparsely-connected mobile ad hoc networks. In unstructured peer-to-peer networks, we add structure to overlay topologies to support file sharing. Specifically, we investigate the advantages of designing overlay topologies with small-world properties to improve (a) search protocol performance and (b) network utilization. We show, using simulation, that "small-world-like" overlay topologies where every node has many close neighbors and few random neighbors exhibit high chances of locating files close to the source of file search query. This improvement in search protocol performance is achieved while decreasing the traffic load on the links in the underlying network. In the context of sparsely-connected mobile ad hoc networks where nodes provide connectivity via mobility, we present a protocol for routing in space and time where the message forwarding decision involves not only where to forward (space), but also when to forward (time). We introduce space-time routing tables and develop methods to compute these routing tables for those instances of ad hoc networks where node mobility is predictable over either a finite horizon or indefinitely due to periodicity in node motion. Furthermore, when the node mobility is unpredictable, we investigate several forwarding heuristics to address the scarcity in transmission opportunities in these sparsely-connected ad hoc networks. In particular, we present the advantages of fragmenting messages and augmenting them with erasure codes to improve the end-to-end message delivery performance.
49

Planejamento e projeto de circuitos secundários de distribuição de energia elétrica por meio de algoritmo busca tabu /

Souza, Cezar Henrique de. January 2006 (has links)
Orientador: José Roberto Sanches Mantovani / Banca: Ruben Augusto Romero Lázaro / Banca: Benemar Alencar de Souza / Resumo: Neste trabalho apresentam-se o desenvolvimento e a implementação de um algoritmo computacional para o problema de planejamento e projeto de circuitos secundários de distribuição de energia elétrica. O problema é formulado como um modelo de Programação Não Linear Inteiro Misto (PNLIM), e para sua solução propõe-se um algoritmo de Busca Tabu (BT). Esta ferramenta permite determinar e avaliar os custos dos elementos que compõem o sistema de distribuição (reforma e/ou construção de redes secundárias), evidenciando sua robustez e precisão. Os algoritmos de cálculo mecânico e definição de estruturas são baseados em normas técnicas para se determinar os postes e estruturas do sistema sob estudo. Os condutores são especificados pelo algoritmo de fluxo de potência trifásico respeitando as condições topológicas, físicas e ambientais. Toda metodologia de cálculo e projeto utilizada neste problema está de acordo com os Procedimentos de Distribuição do Sistema Elétrico Nacional (PRODIST). Para mostrar a eficiência do modelo proposto e da metodologia de planejamento e projeto desenvolvidos, apresentam-se resultados para dois sistemas reais de distribuição com 76 e 54 barras, respectivamente. / Abstract: In this work, the development and implementation of a computational algorithm for the planning and design of secondary circuits of power distribution systems problem, is presented. The problem is formulated as a Non-linear Integer Mixed Programming (NLIMP) problem; and for its solutions it is proposed a Tabu Search (TS) algorithm. This tool allows determining and evaluating the cost of elements that are part of the distribution system (upgrade and/or construction of secondary networks), showing its robustness and accuracy. Mechanic calculation algorithms and structure definitions are based on technical norms in order to determine poles and structures of the system under study. Conductors are specified by the three-phase power flow algorithm, satisfying topological, physical and environmental conditions. All the calculation and design methodology used in this problem agrees with the Distribution Procedures of the National Electric System (PRODIST). In order to show the efficiency of the proposed model and the developed planning and design methodology, results for to real-life distribution systems, with 76 and 54 buses, are presented. / Mestre
50

Design of robust networks : application to the design of wind farm cabling networks / Conception de réseaux robustes : application à des problèmes de câblage dans les parcs éoliens

Ridremont, Thomas 09 April 2019 (has links)
Aujourd’hui, la conception de réseaux est une problématique cruciale qui se pose dans beaucoup de domaines tels que le transport ou l’énergie. En particulier, il est devenu nécessaire d’optimiser la façon dont sont conçus les réseaux permettant de produire de l’énergie. On se concentre ici sur la production électrique produite à travers des parcs éoliens. Cette énergie apparait plus que jamais comme une bonne alternative à la production d’électricité via des centrales thermiques ou nucléaires.Nous nous intéressons dans cette thèse à la conception du câblage collectant l’énergie dans les parcs éoliens. On connaît alors la position de l’ensemble des éoliennes appartenant au parc ainsi que celle du site central collecteur vers laquelle l’énergie doit être acheminée. On connaît également la position des câbles que l’on peut construire, leurs capacités, et la position des nœuds d’interconnexion possibles. Il s’agit de déterminer un câblage de coût minimal permettant de relier l’ensemble des éoliennes à la sous-station, tel que celui-ci soit résistant à un certain nombre de pannes sur le réseau. / Nowadays, the design of networks has become a decisive problematic which appears in many fields such as transport or energy. In particular, it has become necessary and important to optimize the way in which networks used to produce, collect or transport energy are designed. We focus in this thesis on electricity produced through wind farms. The production of energy by wind turbines appears more than ever like a good alternative to the electrical production of thermal or nuclear power plants.We focus in this thesis on the design of the cabling network which allows to collect and route the energy from the wind turbines to a sub-station, linking the wind farm to the electrical network. In this problem, we know the location of each wind turbine of the farm and the one of the sub-station. We also know the location of possible inter-connection nodes which allow to connect different cables between them. Each wind turbine produces a known quantity of energy and with each cable are associated a cost and a capacity (the maximum amount of energy that can be routed through this cable). The optimizationproblem that we consider is to select a set of cables of minimum cost such that the energy produced from the wind turbines can be routed to the sub-station in the network induced by this set of cables, without exceeding the capacity of each cable. We focus on cabling networks resilient to breakdowns.

Page generated in 0.0602 seconds