Spelling suggestions: "subject:"beural well"" "subject:"beural cell""
11 |
Investigation of inhibitors of polysialyltransferase as novel therapeutics for neuroblastoma. Development of in vitro assays to assess the functionality and selectivity of novel small-molecule inhibitors of polysialyltransferases for use in neuroblastoma therapySaeed, Rida F. January 2015 (has links)
Polysialic acid is aunique carbohydrate that decorates the surface of the neural cell adhesion molecule. Polysialic acidis an onco-developmental antigen, expressed in tumours principally of neuroendocrine origin, notably neuroblastoma,strongly correlating with invasion and metastasis. Polysialylation is regulated by two polysialyltransferase enzymes, PST(ST8SiaIV)and STX(ST8SiaII),withSTX dominant in cancer. Post-development polysialic acid expression is only found at low levels in the brain, thus this could be a novel target for cancer therapy. It is hypothesized that inhibition of polysialyltransferasecould lead to control of tumour dissemination and metastasis.The aims of this thesis were to develop tools and in vitro assays to screen novel polysialyltransferaseinhibitors. A panel of tumour cell lines were characterised in terms of growth parameters (using the MTT assay) and polysialic acid expression. This includes a pair of isogenic C6 rat glioma cells (C6-STX and C6-WT) and naturally polysialic acid expressing neuroblastoma cells(SH-SY5Y). Following this, an in vitro assay was validated to screen modulation of polysialic acid expression by removing pre-existing polysialic acid expression using endoneuraminidase N and evaluated the amount of re-expression of polysialic acid using immunocytochemistry. Then, a functional assay was developed and validated for invasion, the matrigel invasion assay. Cytidine monophosphate (tool compound) significantly reduced polysialic acidsurface expression and invasion. A panel of six novel polysialyltransferase inhibitors was screened for cytotoxicity, polysialic acidsurface expression and invasion. Of the potential polysialyltransferase inhibitorsevaluated, ICT3176 and ICT3172 were identified from virtual screening of Maybridge library and were emerged as the most promising inhibitors, demonstrating significant (p<0.05)reduction in cell-surface polysialic acidre-expression and invasion in polysialic acid expressing cells.Furthermore, the specificity of compounds for polysialyltransferase (α-2,8-sialyltransferase) over othermembers of the wider sialyltransferase family (α-2,3-and α-2,6-sialyltransferases) was confirmed using differential lectin staining. These results demonstrated that small molecule inhibitors as STX is possible and provides suitable in vitrocell based assays to discovery more potent derivatives.
|
12 |
Cascades physiopathologiques dans la maladie de Sanfilippo B / Pathophysiological cascades of Sanfilippo B diseaseBruyere, Julie 22 October 2012 (has links)
La mucopolysaccharidose de type IIIB (MPSIIIB), ou maladie de Sanfilippo B, est une maladie de surcharge lysosomale caractérisée par des atteintes neurologiques. Cette maladie génétique rare est causée par la déficience en a-N-acétylglucosaminidase (NAGLU), une enzyme nécessaire pour la dégradation des héparanes sulfates (HS). La dégradation incomplète des HS cause l’accumulation de saccharides d’HS dans les lysosomes et à la surface des cellules. Mais la cascade physiopathologique induite par ces saccharides n’est pour l’instant pas connue. D’une part, ces recherches fournissent des preuves que la communication avec l’environnement des cellules neurales déficientes en NAGLU est altérée. En effet, l’intégrine ß1 et ses effecteurs sont suractivés et recrutés au niveau des plaques d’adhérence dans des astrocytes déficients. Les comportements cellulaires dépendants des intégrines, tels que la polarisation et la migration, sont également altérés. Ces phénotypes sont restaurés par l’apport de l’enzyme déficiente. Cette restauration indique que l’accumulation de saccharides d’HS provoque l’activation de la signalisation des intégrines, et perturbe la polarisation et la migration des cellules neurales. L’ajout de saccharides d’HS purifiés sur des cellules neurales normales confirme que les saccharides d’HS extracellulaires activent des composants des plaques d’adhérence. D’autre part, l’étude d’un modèle cellulaire humain, dont l’expression de NAGLU a été inhibée par shRNA, a montré que l’accumulation de vésicules de stockage caractéristiques de la maladie est causée, entre autre, par une déformation de l’appareil de Golgi et la surexpression de GM130. Ces phénotypes sont également observés dans les neurones atteints. Ils s’accompagnent d’une augmentation de la stabilité et de la nucléation des microtubules, au niveau de l’appareil de Golgi. Les défauts de communication entre la cellule malade et son environnement semblent donc modifier la dynamique et la structure cellulaire. Nous présumons que les mécanismes physiopathologiques déchiffrés en culture sont reliés à la neuropathologie de la MPSIIIB. En perturbant la perception de l’environnement cellulaire, la polarité, la migration, et la pousse neuritique, les saccharides d’HS accumulés dans les tissus cérébraux malades, affectent probablement divers mécanismes clefs de la maturation corticale. / Mucopolysaccharidosis type IIIB (Sanfilippo B disease) is a lysosomal storage disease characterized by severe neurological manifestations in children. This rare monogenic disease is caused by a-Nacetylglucosaminidase (NAGLU) deficiency, a lysosomal hydrolase necessary for heparan sulfate (HS) degradation. This deficiency leads to the accumulation of HS saccharides. Mechanisms mediating HS saccharides deleterious effects on brain cells are not well understood. This research provides evidences that neural cell sensing of environment is altered in MPSIIIB cells. Integrins and focal adhesion components are over-recruited and over-activated in deficient mouse astrocytes. Consistently, integrin-dependant cell behavior such as cell polarization and directed migration were defective in affected astrocytes and neural stem cells. HS saccharide clearance, by NAGLU gene transfer, rescues a normal phenotype suggesting that HS saccharides induce focal adhesion formation. Addition of purified HS saccharides on normal astrocytes confirms that extracellular HS saccharides can activate the recruitment of focal adhesion components and provides an in vitro assay to decipher the saccharide code of HS. Otherwise, investigations performed on HeLa cell model, in which NAGLU expression was inhibited by shRNA, showed that accumulation of intracellular storage vesicles, a hallmark of the disease, is due over expression of a cis-Golgi protein. This affects the Golgi morphology and microtubule nucleation and stability. It seems that alterations of environment cell sensing and downstream signaling also modify the dynamic and the structure of cells. We assume that mechanisms deciphered in cell cultures are related to MPSIIIB neuropathology. By affecting cell perception of environmental cues, cell polarity, cell migration and neurite outgrowth, HS saccharides, which accumulate in brain tissues defective for a HS degradation enzyme, likely affect various processes important for accurate cortical maturation.
|
13 |
The Regulation of Adult Neurogenesis by Rb Family ProteinsFong, Bensun Cambell 02 May 2022 (has links)
A complex regulatory framework underlies the generation of newborn neurons in the adult mammalian brain, including the lifelong maintenance of neural stem cell (NSC) quiescence and instructing NSC entry to and exit from quiescence. Future therapies targeting endogenous repair of the aging or afflicted brain, including neurodegenerative pathologies, rely on present efforts to define and characterize the mechanisms underlying the regulation of adult NSC fate. In this dissertation, we demonstrate a requirement for the Rb/E2F axis in the regulation of the molecular program instructing adult NSC quiescence and activation, with a potential role in the impaired hippocampal function observed in Alzheimer's disease pathology. While Rb plays a role in the production and survival of hippocampal newborn neurons, we identify a collective requirement for Rb family proteins — pRb, p107 and p130 — as well as their targets, E2F family transcriptional activators E2F1 and E2F3, in the regulation of NSC quiescence and activation. We further demonstrate that this is mediated through pivotal factors REST and ASCL1, identified as direct molecular targets of the Rb/E2F axis, and that REST inactivation can partially rescue NSC depletion following Rb family loss. We finally demonstrate impaired NSC activation and a return to quiescence in the 3xTG-AD model of Alzheimer's disease, with altered expression of Rb/E2F genes observed within cell population-specific defects. Ultimately, this work addresses the key issue of how transcriptional signatures of quiescence and activation among adult NSCs are co- ordinated with cell cycle control, and demonstrates that Rb family proteins serve as master regulators of the molecular program instructing adult NSC exit from and re-entry into quiescence.
|
14 |
Estimation of Neural Cell types in the Allen Human Brain Atlas using Murine-derived Expression ProfilesJohnson, Travis Steele 28 September 2016 (has links)
No description available.
|
15 |
Age-related Changes in the Neuronal Architecture of Caenorhabditis Elegans: A DissertationKhandekar, Anagha 16 October 2015 (has links)
Though symptoms such as loss of vision, decline in cognition and memory are evident during aging, the underlying processes that affect neuronal function during aging are not well understood. Unlike changes in other tissues and organs, age-related changes in the nervous system affect the overall physical, mental as well as social state of human beings. To start elucidating the molecular mechanisms underlying normal age-dependent brain decline, we have characterized structural neuronal changes occurring during Caenorhabditis elegans aging. Our analysis reveals distinct neuronal alterations that arise with age and that the types of changes and their age of onset are neuronal-type specific, highlighting the differential susceptibility of neurons to the stresses of life. We also find that these age-dependent neuronal changes are largely uncoupled from lifespan. As a first step towards understanding the neuropathological conditions manifested during senescence, we have characterized the role of the neuronal maintenance gene sax-7/L1CAM in normal C. elegans aging. Our comparison of age-related structural changes in the wild-type nervous system with that of sax-7 mutants, indicates that loss of function of sax-7 results in accelerated neuronal deterioration that mimics alterations occurring during normal aging. Conversely, overexpressing wild-type copies of SAX-7 delays some of the neuronal changes that accompany normal aging, indicating that SAX-7 plays a neuroprotective role. Additionally we find that x mechanical stress from body movements impacts the neuronal changes during adulthood. Taken together, our results give an entry point into the mechanisms of age-related neuroanatomical changes and neuronal protection.
|
16 |
Nerve guides manufactured from photocurable polymers to aid peripheral nerve repairPateman, C.J., Harding, A.J., Glen, A., Taylor, C.S., Christmas, C.R., Robinson, P.P., Rimmer, Stephen, Boissonade, F.M., Claeyssens, F., Haycock, J.W. 2015 February 1914 (has links)
Yes / The peripheral nervous system has a limited innate capacity for self-repair following injury, and surgical intervention is often required. For injuries greater than a few millimeters autografting is standard practice although it is associated with donor site morbidity and is limited in its availability. Because of this, nerve guidance conduits (NGCs) can be viewed as an advantageous alternative, but currently have limited efficacy for short and large injury gaps in comparison to autograft. Current commercially available NGC designs rely on existing regulatory approved materials and traditional production methods, limiting improvement of their design. The aim of this study was to establish a novel method for NGC manufacture using a custom built laser-based microstereolithography (muSL) setup that incorporated a 405 nm laser source to produce 3D constructs with approximately 50 mum resolution from a photocurable poly(ethylene glycol) resin. These were evaluated by SEM, in vitro neuronal, Schwann and dorsal root ganglion culture and in vivo using a thy-1-YFP-H mouse common fibular nerve injury model. NGCs with dimensions of 1 mm internal diameter x 5 mm length with a wall thickness of 250 mum were fabricated and capable of supporting re-innervation across a 3 mm injury gap after 21 days, with results close to that of an autograft control. The study provides a technology platform for the rapid microfabrication of biocompatible materials, a novel method for in vivo evaluation, and a benchmark for future development in more advanced NGC designs, biodegradable and larger device sizes, and longer-term implantation studies.
|
Page generated in 0.0519 seconds