• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Blacked Out Brain : Neural Mechanisms of Unconsciousness in General Anesthesia and Disorders of Consciousness

Bahrd, Phillie January 2019 (has links)
Finding the neural mechanisms of unconsciousness is a pursuit with significance to both the scientific study of consciousness as well as for the improvement of clinical diagnosis of patients with severe structural brain damage that has resulted in disorders of consciousness (DOC), such as coma or vegetative state . This literature review gives an account for what consciousness studies have contributed to the understanding of the neural mechanisms of unconsciousness, focusing on experiments using anesthetic agents to investigate the loss and return of consciousness. Mechanisms that frequently correlate with the loss of consciousness are modulation of the brainstem, the thalamus, and the cortex, but different anesthetic drugs act on different areas. According to a bottom-up approach unconsciousness can be induced by sleep-circuits in the brainstem, and according to a top-down approach unconsciousness can be induced by cortical and thalamocortical disruption. But the mechanisms involved during loss of consciousness are not the same as for return of consciousness, and this paper includes evidence for the mechanisms involved during the return being closer to what research should be further investigating. The mechanisms involved in return from anesthesia-induced unconsciousness resemble those mechanisms involved in recovery from DOC. Studying mechanisms of unconsciousness can further our understanding of consciousness, as well as improve the diagnosis and treatment of patients with DOC.
2

Investigating the Neural Substrates and Neural Markers of Optimism and Optimism Bias : A Systematic Review

Åberg, Emma January 2021 (has links)
Optimism refers to peoples’ general tendency to anticipate good outcomes in areas that are important to them. Numerous studies have shown that optimism is significantly correlated with improved physical and mental health. Optimism can come to an overly optimistic degree, called optimism bias. People generally expect better outcomes and fewer negative events to happen for themselves in the future compared to the average person. There are two sides to this: being optimistically biased might lead to risky behavior, but it might also ease people's worries about the future. To have a consistently negative view is suggested to correlate with depressive symptoms and worsened health. The aim of this thesis is to investigate the neural correlates and functional markers of optimism and optimism bias. Optimism is suggested to correlate with gray-matter volume in the thalamus, orbitofrontal cortex (OFC), and bilateral putamen. The inferior frontal gyrus (IFG) and the rostral anterior cingulate cortex (rACC) have a crucial role in dismissing undesirable information and self referential processing. Research regarding this issue might be beneficial for further understanding of the connection between optimism and well-being.
3

About turn:neural mechanisms underlying visual processing of rotated letters and digits

Milivojevic, Branka January 2007 (has links)
This thesis explores neural activity associated with processing of rotated alphanumeric characters, focusing particularly on linear and quadratic trend components of orientation-dependent activity. Choice of these components was driven by results of reaction-time (RT) studies; judging whether characters are normal or backward (parity task) typically elicit RTs that are linearly related to character disorientation, implying mental rotation of the characters to the upright, while judging whether they are letters or digits (categorisation task) elicits RTs related nonlinearly to disorientation, combining both linear and quadratic component, but not indicative of mental rotation. In Experiment 1 neural activity was monitored using fMRI while participants performed these tasks. In the next two experiments, neural processing was monitored with high-density EEG. In Experiment 2 participants performed the same two tasks, while in Experiment 3 they performed the category task and red-blue colour judgements. In Experiment 1, linear increases in fMRI activation were elicited only by the parity task and were observed in the posterior portion of the dorsal intraparietal sulcus and lateral and medial pre-supplementary motor areas, suggesting a fronto-parietal network underlying mental rotation. Experiment 2 showed that linear increases in parietal negativity between 350 and 710 ms only evident in the parity task, again indicating that mental rotation is only elicited by that task. Contrary to previous evidence, Experiment 2 indicated that both hemispheres may be involved in mental rotation, but rotation is faster in the right hemisphere than in the left hemisphere. Experiment 1 also showed that effects of orientation common to both tasks were best characterised by a quadratic trend, and were restricted to the supramarginal gyrus. This activation was interpreted as representing orientation-dependent shape recognition. Experiments 2 and 3 also revealed orientation-dependent neural activity at three distinct stages prior to mental rotation. First, on the P1 component, there was a difference between oblique and vertical orientations, suggesting the extraction of orientation based on axis of elongation. Next, orientation affected the N1 component, with longer latencies and larger amplitudes with misorientation, and smaller effects for inversion than for intermediate angular rotations. Finally, changes in orientation affected the P2 component differently for the parity and category tasks, probably signalling the perception of orientation relative to a parity-defined memory representation, and serving as a preparation for mental rotation. These experiments identify both the orientation-specific neural processing that occurs prior to the onset of mental rotation, and the subsequent neural correlates of mental rotation itself. / Top Achiever Doctoral Scholarship, University of Auckland Doctoral Scholarship, The New Zealand Neurological Foundation, University of Auckland Research Fund (Project numbers: 3607199, 3605876 3604420)
4

About turn:neural mechanisms underlying visual processing of rotated letters and digits

Milivojevic, Branka January 2007 (has links)
This thesis explores neural activity associated with processing of rotated alphanumeric characters, focusing particularly on linear and quadratic trend components of orientation-dependent activity. Choice of these components was driven by results of reaction-time (RT) studies; judging whether characters are normal or backward (parity task) typically elicit RTs that are linearly related to character disorientation, implying mental rotation of the characters to the upright, while judging whether they are letters or digits (categorisation task) elicits RTs related nonlinearly to disorientation, combining both linear and quadratic component, but not indicative of mental rotation. In Experiment 1 neural activity was monitored using fMRI while participants performed these tasks. In the next two experiments, neural processing was monitored with high-density EEG. In Experiment 2 participants performed the same two tasks, while in Experiment 3 they performed the category task and red-blue colour judgements. In Experiment 1, linear increases in fMRI activation were elicited only by the parity task and were observed in the posterior portion of the dorsal intraparietal sulcus and lateral and medial pre-supplementary motor areas, suggesting a fronto-parietal network underlying mental rotation. Experiment 2 showed that linear increases in parietal negativity between 350 and 710 ms only evident in the parity task, again indicating that mental rotation is only elicited by that task. Contrary to previous evidence, Experiment 2 indicated that both hemispheres may be involved in mental rotation, but rotation is faster in the right hemisphere than in the left hemisphere. Experiment 1 also showed that effects of orientation common to both tasks were best characterised by a quadratic trend, and were restricted to the supramarginal gyrus. This activation was interpreted as representing orientation-dependent shape recognition. Experiments 2 and 3 also revealed orientation-dependent neural activity at three distinct stages prior to mental rotation. First, on the P1 component, there was a difference between oblique and vertical orientations, suggesting the extraction of orientation based on axis of elongation. Next, orientation affected the N1 component, with longer latencies and larger amplitudes with misorientation, and smaller effects for inversion than for intermediate angular rotations. Finally, changes in orientation affected the P2 component differently for the parity and category tasks, probably signalling the perception of orientation relative to a parity-defined memory representation, and serving as a preparation for mental rotation. These experiments identify both the orientation-specific neural processing that occurs prior to the onset of mental rotation, and the subsequent neural correlates of mental rotation itself. / Top Achiever Doctoral Scholarship, University of Auckland Doctoral Scholarship, The New Zealand Neurological Foundation, University of Auckland Research Fund (Project numbers: 3607199, 3605876 3604420)
5

About turn:neural mechanisms underlying visual processing of rotated letters and digits

Milivojevic, Branka January 2007 (has links)
This thesis explores neural activity associated with processing of rotated alphanumeric characters, focusing particularly on linear and quadratic trend components of orientation-dependent activity. Choice of these components was driven by results of reaction-time (RT) studies; judging whether characters are normal or backward (parity task) typically elicit RTs that are linearly related to character disorientation, implying mental rotation of the characters to the upright, while judging whether they are letters or digits (categorisation task) elicits RTs related nonlinearly to disorientation, combining both linear and quadratic component, but not indicative of mental rotation. In Experiment 1 neural activity was monitored using fMRI while participants performed these tasks. In the next two experiments, neural processing was monitored with high-density EEG. In Experiment 2 participants performed the same two tasks, while in Experiment 3 they performed the category task and red-blue colour judgements. In Experiment 1, linear increases in fMRI activation were elicited only by the parity task and were observed in the posterior portion of the dorsal intraparietal sulcus and lateral and medial pre-supplementary motor areas, suggesting a fronto-parietal network underlying mental rotation. Experiment 2 showed that linear increases in parietal negativity between 350 and 710 ms only evident in the parity task, again indicating that mental rotation is only elicited by that task. Contrary to previous evidence, Experiment 2 indicated that both hemispheres may be involved in mental rotation, but rotation is faster in the right hemisphere than in the left hemisphere. Experiment 1 also showed that effects of orientation common to both tasks were best characterised by a quadratic trend, and were restricted to the supramarginal gyrus. This activation was interpreted as representing orientation-dependent shape recognition. Experiments 2 and 3 also revealed orientation-dependent neural activity at three distinct stages prior to mental rotation. First, on the P1 component, there was a difference between oblique and vertical orientations, suggesting the extraction of orientation based on axis of elongation. Next, orientation affected the N1 component, with longer latencies and larger amplitudes with misorientation, and smaller effects for inversion than for intermediate angular rotations. Finally, changes in orientation affected the P2 component differently for the parity and category tasks, probably signalling the perception of orientation relative to a parity-defined memory representation, and serving as a preparation for mental rotation. These experiments identify both the orientation-specific neural processing that occurs prior to the onset of mental rotation, and the subsequent neural correlates of mental rotation itself. / Top Achiever Doctoral Scholarship, University of Auckland Doctoral Scholarship, The New Zealand Neurological Foundation, University of Auckland Research Fund (Project numbers: 3607199, 3605876 3604420)
6

About turn:neural mechanisms underlying visual processing of rotated letters and digits

Milivojevic, Branka January 2007 (has links)
This thesis explores neural activity associated with processing of rotated alphanumeric characters, focusing particularly on linear and quadratic trend components of orientation-dependent activity. Choice of these components was driven by results of reaction-time (RT) studies; judging whether characters are normal or backward (parity task) typically elicit RTs that are linearly related to character disorientation, implying mental rotation of the characters to the upright, while judging whether they are letters or digits (categorisation task) elicits RTs related nonlinearly to disorientation, combining both linear and quadratic component, but not indicative of mental rotation. In Experiment 1 neural activity was monitored using fMRI while participants performed these tasks. In the next two experiments, neural processing was monitored with high-density EEG. In Experiment 2 participants performed the same two tasks, while in Experiment 3 they performed the category task and red-blue colour judgements. In Experiment 1, linear increases in fMRI activation were elicited only by the parity task and were observed in the posterior portion of the dorsal intraparietal sulcus and lateral and medial pre-supplementary motor areas, suggesting a fronto-parietal network underlying mental rotation. Experiment 2 showed that linear increases in parietal negativity between 350 and 710 ms only evident in the parity task, again indicating that mental rotation is only elicited by that task. Contrary to previous evidence, Experiment 2 indicated that both hemispheres may be involved in mental rotation, but rotation is faster in the right hemisphere than in the left hemisphere. Experiment 1 also showed that effects of orientation common to both tasks were best characterised by a quadratic trend, and were restricted to the supramarginal gyrus. This activation was interpreted as representing orientation-dependent shape recognition. Experiments 2 and 3 also revealed orientation-dependent neural activity at three distinct stages prior to mental rotation. First, on the P1 component, there was a difference between oblique and vertical orientations, suggesting the extraction of orientation based on axis of elongation. Next, orientation affected the N1 component, with longer latencies and larger amplitudes with misorientation, and smaller effects for inversion than for intermediate angular rotations. Finally, changes in orientation affected the P2 component differently for the parity and category tasks, probably signalling the perception of orientation relative to a parity-defined memory representation, and serving as a preparation for mental rotation. These experiments identify both the orientation-specific neural processing that occurs prior to the onset of mental rotation, and the subsequent neural correlates of mental rotation itself. / Top Achiever Doctoral Scholarship, University of Auckland Doctoral Scholarship, The New Zealand Neurological Foundation, University of Auckland Research Fund (Project numbers: 3607199, 3605876 3604420)
7

Formation de motif dynamique et structuré dans les circuits neuronaux et des réseaux du cerveau à grande échelle. / Strutured pattern coordination in neural circuits and large-scale brain networks.

Woodman, Michael 04 June 2013 (has links)
Un des challenges en neurosciences consiste à trouver une bonne adéquation entre le comportement et l'activité neuronale stimulée, le but à long terme étant d'obtenir un modèle prédictif. Les travaux ré- cents dans le domaine comportemental ont montré la mise en place d'outils d'analyses comme ceux utilisés en physique non linéaire, qui permettent une meilleure comparaison avec les modèles neu- ronaux. Nous montrons dans cette thèse que les processus neuraux et comportementales peuvent être visualisés sous forme de motifs, voire de structures dans un sous espace à multiple degrés de liberté, sous forme de trajectoires dans l'espace des phases afin de montrer la dynamique non linéaire émergeante. Nous présentons aussi deux exemples , l'un est le taux de pics d'activité et leur comportement temporel qui permet de générer une base des états dynamiques de l'ensemble du cerveau, l'autre montre comment identifier les mo- tifs ou sous réseaux actifs en présence de synchronisation à longue distance. Ces travaux montrent comment modéliser l'activité cor- ticocorticale afin de contribuer à l'état de référence du cerveau. A partir de l'activité neuronale simulée nous sommes donc en mesure d'identifier les motifs et sous réseaux mis en jeu et prévoir l'activité à court terme qui peut être observée ainsi que leurs implications futurs. / A persistent question in the neurosciences asks what aspects of behavior correspond to neural activity. This means finding predictors of behavioral state from neural state, yet behavioral studies have shown that behaviors are structured state and time and may be described mathematically by nonlinear dynamical systems. Another similarity found between behavior and neurosciences is the coordination of many degrees of freedom. Given these two similarities, this thesis suggests that neural and behavioral processes involve 1) the task specific formation of patterns that bind or coordinate degrees of freedom such that only a few degrees of freedom remain and 2) the structured, nonlinear dynamical interaction of these degrees of freedom, tracing out trajectories in state space that may correspond to the completion of a task or recognition of visual stimulus. The combination of these two complementary aspects will be referred to structured flows on manifolds. This thesis provides two examples of how such structure can be found in neural network models both at the level of spiking neural circuits, as well as large-scale inter-regional networks in a whole brain model. We discuss the two contributions in terms of the common principles of pattern formation and structured nonlinear dynamical interactions and how these principles allow for a link to made between the dynamics of behaviors and dynamics of underlying neural networks, and in conclusion, we outline experimental predictions and future work motivated by this thesis.
8

The neural correlates of mindfulness-based therapy on anxiety : A systematic review

Lindberg, Alexandra, Al-Bachachi, Shahad January 2023 (has links)
Anxiety is a high-prevalence disorder, and it is often treated by medication which can be costly, has side effects, and is not available for everyone in need. Mindfulness-based interventions (MBIs) such as mindfulness-based stress reduction (MBSR) and mindfulness-based cognitive therapy (MBCT) are great alternatives to treat anxiety. Both MBIs are not only more accessible but have no side effects as well. To establish whether MBIs can become a main treatment for anxiety, the associated neural correlates and changes should be investigated further. The aim of this systematic review is to investigate whether neural correlates of MBIs are mainly caused by emotional or attentional neural mechanisms, or if both are involved. There were five studies selected and included according to a set of inclusion and exclusion criteria. The results suggest that MBIs are in fact effective in alleviating anxiety symptoms by enhancing both emotion and attention regulation. However, several of the included studies came with limitations such as having no significance in p-values, no control groups, and small samples. Thus, further research is needed to draw a conclusion on whether MBIs are the best alternative for the alleviation and treatment of anxiety.
9

The face in your voice–how audiovisual learning benefits vocal communication

Schall, Sonja 12 September 2014 (has links)
Gesicht und Stimme einer Person sind stark miteinander assoziiert und werden normalerweise als eine Einheit wahrgenommen. Trotz des natürlichen gemeinsamen Auftretens von Gesichtern und Stimmen, wurden deren Wahrnehmung in den Neurowissenschaften traditionell aus einer unisensorischen Perspektive untersucht. Das heißt, dass sich Forschung zu Gesichtswahrnehmung ausschließlich auf das visuelle System fokusierte, während Forschung zu Stimmwahrnehmung nur das auditorische System untersuchte. In dieser Arbeit schlage ich vor, dass das Gehirn an die multisensorische Beschaffenheit von Gesichtern und Stimmen adaptiert ist, und dass diese Adaption sogar dann sichtbar ist, wenn nur die Stimme einer Person gehört wird, ohne dass das Gesicht zu sehen ist. Im Besonderen, untersucht diese Arbeit wie das Gehirn zuvor gelernte Gesichts-Stimmassoziationen ausnutzt um die auditorische Analyse von Stimmen und Sprache zu optimieren. Diese Dissertation besteht aus drei empirischen Studien, welche raumzeitliche Hirnaktivität mittels funktionaler Magnetresonanztomographie (fMRT) und Magnetoenzephalographie (MEG) liefern. Alle Daten wurden gemessen, während Versuchspersonen auditive Sprachbeispiele von zuvor familiarisierten Sprechern (mit oder ohne Gesicht des Sprechers) hörten. Drei Ergebnisse zeigen, dass zuvor gelernte visuelle Sprecherinformationen zur auditorischen Analyse von Stimmen beitragen: (i) gesichtssensible Areale waren Teil des sensorischen Netzwerks, dass durch Stimmen aktiviert wurde, (ii) die auditorische Verarbeitung von Stimmen war durch die gelernte Gesichtsinformation zeitlich faszilitiert und (iii) multisensorische Interaktionen zwischen gesichtsensiblen und stimm-/sprachsensiblen Arealen waren verstärkt. Die vorliegende Arbeit stellt den traditionellen, unisensorischen Blickwinkel auf die Wahrnehmung von Stimmen und Sprache in Frage und legt nahe, dass die Wahrnehmung von Stimme und Sprache von von einem multisensorischen Verarbeitungsschema profitiert. / Face and voice of a person are strongly associated with each other and usually perceived as a single entity. Despite the natural co-occurrence of faces and voices, brain research has traditionally approached their perception from a unisensory perspective. This means that research into face perception has exclusively focused on the visual system, while research into voice perception has exclusively probed the auditory system. In this thesis, I suggest that the brain has adapted to the multisensory nature of faces and voices and that this adaptation is evident even when one input stream is missing, that is, when input is actually unisensory. Specifically, the current work investigates how the brain exploits previously learned voice-face associations to optimize the auditory processing of voices and vocal speech. Three empirical studies providing spatiotemporal brain data—via functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG)—constitute this thesis. All data were acquired while participants listened to auditory-only speech samples of previously familiarized speakers (with or without seeing the speakers’ faces). Three key findings demonstrate that previously learned visual speaker information support the auditory analysis of vocal sounds: (i) face-sensitive areas were part of the sensory network activated by voices, (ii) the auditory analysis of voices was temporally facilitated by learned facial associations and (iii) multisensory interactions between face- and voice/speech-sensitive regions were increased. The current work challenges traditional unisensory views on vocal perception and rather suggests that voice and vocal speech perception profit from a multisensory neural processing scheme.
10

Etude de la contribution du couplage intermusculaire au contrôle de l’activité des muscles synergistes agonistes et antagonistes lors de contractions isométriques volontaires / Contribution of intermuscular coupling to the control of the activity of agonist and antagonist synergistic muscles during isometric voluntary contractions

Charissou, Camille 30 March 2018 (has links)
Le corps humain possède une grande redondance musculo-squelettique, se traduisant par une infinité de coordinations musculaires possibles pour produire un effort résultant. Lors d'un mouvement, le système nerveux central est confronté à la gestion de cette redondance. A travers l’analyse de cohérence entre les signaux électromyographiques, ce travail de thèse étudie le rôle fonctionnel du couplage intermusculaire et explore la contribution des mécanismes nerveux impliqués dans la régulation de la redondance musculaire en termes de contrôle de l’activité des muscles agonistes, et antagonistes impliqués dans le phénomène de co-contraction. Nos résultats ont révélé que le couplage intermusculaire entre deux muscles agonistes est modulé en présence de fatigue et en fonction de l’expertise sportive. De plus, le couplage entre muscles agonistes et antagonistes dépend des contraintes mécaniques et du rôle fonctionnel des muscles, et semble directement lié au niveau de co-contraction. La cohérence intermusculaire est modulée dans plusieurs bandes de fréquence, témoignant de l’implication de différentes commandes centrales communes d’origines spinales et supra-spinales. Nos conclusions amènent à penser que la coordination musculaire est en partie contrôlée par des commandes nerveuses communes dont la contribution est modulée suivant les propriétés fonctionnelles des muscles concernées, pour s’adapter de manière optimale aux contraintes internes ou externes de la tâche. Les travaux déjà engagés proposent de contribuer à une meilleure compréhension des mécanismes sous-jacents l’altération de la fonction motrice chez des patients cérébro-lésés. / The human motor system is characterized by high musculoskeletal redundancy, implying that a given resultant effort can result from infinity of feasible muscle coordinations. During a movement, the central nervous system has to manage such redundancy. Through coherence analysis between electromyographic signals, this thesis work aims at investigating the functional role of intermuscular coupling and at better understanding the contribution of central nervous mechanisms responsible for the regulation of muscle redundancy, in terms of agonist muscle activity and also antagonist muscles activity involved in co-contraction. Our results revealed that intermuscular coupling between agonist muscles is modulated according to both the fatigue level and the training status. We also showed that the coupling between agonist and antagonist muscles depends on the mechanical configuration and functional role of muscle pairs, and seems directly related to co-contraction. The modulation of intermuscular coherence occurs in several frequency bands, suggesting the involvement of different common central drives of spinal and supra-spinal origins according to task constraints. Taken together, our results lead us to conclude that common neural drives take part in the control of muscular coordination, with different relative contribution according to the functional properties of recruited muscles, in order to optimally adapt to both internal and external task contraints. Work already undertaken proposes to provide a better understanding of the mechanisms underlying impairment of motor function in brain-injured patients.

Page generated in 0.0648 seconds