• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 789
  • 117
  • 65
  • 34
  • 18
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 9
  • 4
  • 3
  • 2
  • Tagged with
  • 1160
  • 1160
  • 1160
  • 1137
  • 256
  • 154
  • 141
  • 139
  • 129
  • 123
  • 123
  • 123
  • 122
  • 109
  • 105
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Function approximation in high-dimensional spaces using lower-dimensional Gaussian RBF networks.

January 1992 (has links)
by Jones Chui. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1992. / Includes bibliographical references (leaves 62-[66]). / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Fundamentals of Artificial Neural Networks --- p.2 / Chapter 1.1.1 --- Processing Unit --- p.2 / Chapter 1.1.2 --- Topology --- p.3 / Chapter 1.1.3 --- Learning Rules --- p.4 / Chapter 1.2 --- Overview of Various Neural Network Models --- p.6 / Chapter 1.3 --- Introduction to the Radial Basis Function Networks (RBFs) --- p.8 / Chapter 1.3.1 --- Historical Development --- p.9 / Chapter 1.3.2 --- Some Intrinsic Problems --- p.9 / Chapter 1.4 --- Objective of the Thesis --- p.10 / Chapter 2 --- Low-dimensional Gaussian RBF networks (LowD RBFs) --- p.13 / Chapter 2.1 --- Architecture of LowD RBF Networks --- p.13 / Chapter 2.1.1 --- Network Structure --- p.13 / Chapter 2.1.2 --- Learning Rules --- p.17 / Chapter 2.2 --- Construction of LowD RBF Networks --- p.19 / Chapter 2.2.1 --- Growing Heuristic --- p.19 / Chapter 2.2.2 --- Pruning Heuristic --- p.27 / Chapter 2.2.3 --- Summary --- p.31 / Chapter 3 --- Application examples --- p.34 / Chapter 3.1 --- Chaotic Time Series Prediction --- p.35 / Chapter 3.1.1 --- Performance Comparison --- p.39 / Chapter 3.1.2 --- Sensitivity Analysis of MSE THRESHOLDS --- p.41 / Chapter 3.1.3 --- Effects of Increased Embedding Dimension --- p.41 / Chapter 3.1.4 --- Comparison with Tree-Structured Network --- p.46 / Chapter 3.1.5 --- Overfitting Problem --- p.46 / Chapter 3.2 --- Nonlinear prediction of speech signal --- p.49 / Chapter 3.2.1 --- Comparison with Linear Predictive Coding (LPC) --- p.54 / Chapter 3.2.2 --- Performance Test in Noisy Conditions --- p.55 / Chapter 3.2.3 --- Iterated Prediction of Speech --- p.59 / Chapter 4 --- Conclusion --- p.60 / Chapter 4.1 --- Discussions --- p.60 / Chapter 4.2 --- Limitations and Suggestions for Further Research --- p.61 / Bibliography --- p.62
212

An integration of hidden Markov model and neural network for phoneme recognition.

January 1993 (has links)
by Patrick Shu Pui Ko. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 77-78). / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Introduction to Speech Recognition --- p.1 / Chapter 1.2 --- Classifications and Constraints of Speech Recognition Systems --- p.1 / Chapter 1.2.1 --- Isolated Subword Unit Recognition --- p.1 / Chapter 1.2.2 --- Isolated Word Recognition --- p.2 / Chapter 1.2.3 --- Continuous Speech Recognition --- p.2 / Chapter 1.3 --- Objective of the Thesis --- p.3 / Chapter 1.3.1 --- What is the Problem --- p.3 / Chapter 1.3.2 --- How the Problem is Approached --- p.3 / Chapter 1.3.3 --- The Organization of this Thesis --- p.3 / Chapter 2. --- Literature Review --- p.5 / Chapter 2.1 --- Approaches to the Problem of Speech Recognition --- p.5 / Chapter 2.1.1 --- Template-Based Approaches --- p.6 / Chapter 2.1.2 --- Knowledge-Based Approaches --- p.9 / Chapter 2.1.3 --- Stochastic Approaches --- p.10 / Chapter 2.1.4 --- Connectionist Approaches --- p.14 / Chapter 3. --- Discrimination Issues of HMM --- p.16 / Chapter 3.1 --- Maximum Likelihood Estimation (MLE) --- p.16 / Chapter 3.2 --- Maximum Mutual Information (MMI) --- p.17 / Chapter 4. --- Neural Networks --- p.19 / Chapter 4.1 --- History --- p.19 / Chapter 4.2 --- Basic Concepts --- p.20 / Chapter 4.3 --- Learning --- p.21 / Chapter 4.3.1 --- Supervised Training --- p.21 / Chapter 4.3.2 --- Reinforcement Training --- p.22 / Chapter 4.3.3 --- Self-Organization --- p.22 / Chapter 4.4 --- Error Back-propagation --- p.22 / Chapter 5. --- Proposal of a Discriminative Neural Network Layer --- p.25 / Chapter 5.1 --- Rationale --- p.25 / Chapter 5.2 --- HMM Parameters --- p.27 / Chapter 5.3 --- Neural Network Layer --- p.28 / Chapter 5.4 --- Decision Rules --- p.29 / Chapter 6. --- Data Preparation --- p.31 / Chapter 6.1 --- TIMIT --- p.31 / Chapter 6.2 --- Feature Extraction --- p.34 / Chapter 6.3 --- Training --- p.43 / Chapter 7. --- Experiments and Results --- p.52 / Chapter 7.1 --- Experiments --- p.52 / Chapter 7.2 --- Experiment I --- p.52 / Chapter 7.3 --- Experiment II --- p.55 / Chapter 7.4 --- Experiment III --- p.57 / Chapter 7.5 --- Experiment IV --- p.58 / Chapter 7.6 --- Experiment V --- p.60 / Chapter 7.7 --- Computational Issues --- p.62 / Chapter 7.8 --- Limitations --- p.63 / Chapter 8. --- Conclusion --- p.64 / Chapter 9. --- Future Directions --- p.67 / Appendix / Chapter A. --- Linear Predictive Coding --- p.69 / Chapter B. --- Implementation of a Vector Quantizer --- p.70 / Chapter C. --- Implementation of HMM --- p.73 / Chapter C.1 --- Calculations Underflow --- p.73 / Chapter C.2 --- Zero-lising Effect --- p.75 / Chapter C.3 --- Training With Multiple Observation Sequences --- p.76 / References --- p.77
213

Continuous speech phoneme recognition using neural networks and grammar correction.

January 1995 (has links)
by Wai-Tat Fu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 104-[109]). / Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Problem of Speech Recognition --- p.1 / Chapter 1.2 --- Why continuous speech recognition? --- p.5 / Chapter 1.3 --- Current status of continuous speech recognition --- p.6 / Chapter 1.4 --- Research Goal --- p.10 / Chapter 1.5 --- Thesis outline --- p.10 / Chapter 2 --- Current Approaches to Continuous Speech Recognition --- p.12 / Chapter 2.1 --- BASIC STEPS FOR CONTINUOUS SPEECH RECOGNITION --- p.12 / Chapter 2.2 --- THE HIDDEN MARKOV MODEL APPROACH --- p.16 / Chapter 2.2.1 --- Introduction --- p.16 / Chapter 2.2.2 --- Segmentation and Pattern Matching --- p.18 / Chapter 2.2.3 --- Word Formation and Syntactic Processing --- p.22 / Chapter 2.2.4 --- Discussion --- p.23 / Chapter 2.3 --- NEURAL NETWORK APPROACH --- p.24 / Chapter 2.3.1 --- Introduction --- p.24 / Chapter 2.3.2 --- Segmentation and Pattern Matching --- p.25 / Chapter 2.3.3 --- Discussion --- p.27 / Chapter 2.4 --- MLP/HMM HYBRID APPROACH --- p.28 / Chapter 2.4.1 --- Introduction --- p.28 / Chapter 2.4.2 --- Architecture of Hybrid MLP/HMM Systems --- p.29 / Chapter 2.4.3 --- Discussions --- p.30 / Chapter 2.5 --- SYNTACTIC GRAMMAR --- p.30 / Chapter 2.5.1 --- Introduction --- p.30 / Chapter 2.5.2 --- Word formation and Syntactic Processing --- p.31 / Chapter 2.5.3 --- Discussion --- p.32 / Chapter 2.6 --- SUMMARY --- p.32 / Chapter 3 --- Neural Network As Pattern Classifier --- p.34 / Chapter 3.1 --- INTRODUCTION --- p.34 / Chapter 3.2 --- TRAINING ALGORITHMS AND TOPOLOGIES --- p.35 / Chapter 3.2.1 --- Multilayer Perceptrons --- p.35 / Chapter 3.2.2 --- Recurrent Neural Networks --- p.39 / Chapter 3.2.3 --- Self-organizing Maps --- p.41 / Chapter 3.2.4 --- Learning Vector Quantization --- p.43 / Chapter 3.3 --- EXPERIMENTS --- p.44 / Chapter 3.3.1 --- The Data Set --- p.44 / Chapter 3.3.2 --- Preprocessing of the Speech Data --- p.45 / Chapter 3.3.3 --- The Pattern Classifiers --- p.50 / Chapter 3.4 --- RESULTS AND DISCUSSIONS --- p.53 / Chapter 4 --- High Level Context Information --- p.56 / Chapter 4.1 --- INTRODUCTION --- p.56 / Chapter 4.2 --- HIDDEN MARKOV MODEL APPROACH --- p.57 / Chapter 4.3 --- THE DYNAMIC PROGRAMMING APPROACH --- p.59 / Chapter 4.4 --- THE SYNTACTIC GRAMMAR APPROACH --- p.60 / Chapter 5 --- Finite State Grammar Network --- p.62 / Chapter 5.1 --- INTRODUCTION --- p.62 / Chapter 5.2 --- THE GRAMMAR COMPILATION --- p.63 / Chapter 5.2.1 --- Introduction --- p.63 / Chapter 5.2.2 --- K-Tails Clustering Method --- p.66 / Chapter 5.2.3 --- Inference of finite state grammar --- p.67 / Chapter 5.2.4 --- Error Correcting Parsing --- p.69 / Chapter 5.3 --- EXPERIMENT --- p.71 / Chapter 5.4 --- RESULTS AND DISCUSSIONS --- p.73 / Chapter 6 --- The Integrated System --- p.81 / Chapter 6.1 --- INTRODUCTION --- p.81 / Chapter 6.2 --- POSTPROCESSING OF NEURAL NETWORK OUTPUT --- p.82 / Chapter 6.2.1 --- Activation Threshold --- p.82 / Chapter 6.2.2 --- Duration Threshold --- p.85 / Chapter 6.2.3 --- Merging of Phoneme boundaries --- p.88 / Chapter 6.3 --- THE ERROR CORRECTING PARSER --- p.90 / Chapter 6.4 --- RESULTS AND DISCUSSIONS --- p.96 / Chapter 7 --- Conclusions --- p.101 / Bibliography --- p.105
214

Applying Levenberg-Marquardt algorithm with block-diagonal Hessian approximation to recurrent neural network training.

January 1999 (has links)
by Chi-cheong Szeto. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 162-165). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgment --- p.ii / Table of Contents --- p.iii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Time series prediction --- p.1 / Chapter 1.2 --- Forecasting models --- p.1 / Chapter 1.2.1 --- Networks using time delays --- p.2 / Chapter 1.2.1.1 --- Model description --- p.2 / Chapter 1.2.1.2 --- Limitation --- p.3 / Chapter 1.2.2 --- Networks using context units --- p.3 / Chapter 1.2.2.1 --- Model description --- p.3 / Chapter 1.2.2.2 --- Limitation --- p.6 / Chapter 1.2.3 --- Layered fully recurrent networks --- p.6 / Chapter 1.2.3.1 --- Model description --- p.6 / Chapter 1.2.3.2 --- Our selection and motivation --- p.8 / Chapter 1.2.4 --- Other models --- p.8 / Chapter 1.3 --- Learning methods --- p.8 / Chapter 1.3.1 --- First order and second order methods --- p.9 / Chapter 1.3.2 --- Nonlinear least squares methods --- p.11 / Chapter 1.3.2.1 --- Levenberg-Marquardt method ´ؤ our selection and motivation --- p.13 / Chapter 1.3.2.2 --- Levenberg-Marquardt method - algorithm --- p.13 / Chapter 1.3.3 --- "Batch mode, semi-sequential mode and sequential mode of updating" --- p.15 / Chapter 1.4 --- Jacobian matrix calculations in recurrent networks --- p.15 / Chapter 1.4.1 --- RTBPTT-like Jacobian matrix calculation --- p.15 / Chapter 1.4.2 --- RTRL-like Jacobian matrix calculation --- p.17 / Chapter 1.4.3 --- Comparison between RTBPTT-like and RTRL-like calculations --- p.18 / Chapter 1.5 --- Computation complexity reduction techniques in recurrent networks --- p.19 / Chapter 1.5.1 --- Architectural approach --- p.19 / Chapter 1.5.1.1 --- Recurrent connection reduction method --- p.20 / Chapter 1.5.1.2 --- Treating the feedback signals as additional inputs method --- p.20 / Chapter 1.5.1.3 --- Growing network method --- p.21 / Chapter 1.5.2 --- Algorithmic approach --- p.21 / Chapter 1.5.2.1 --- History cutoff method --- p.21 / Chapter 1.5.2.2 --- Changing the updating frequency from sequential mode to semi- sequential mode method --- p.22 / Chapter 1.6 --- Motivation for using block-diagonal Hessian matrix --- p.22 / Chapter 1.7 --- Objective --- p.23 / Chapter 1.8 --- Organization of the thesis --- p.24 / Chapter Chapter 2 --- Learning with the block-diagonal Hessian matrix --- p.25 / Chapter 2.1 --- Introduction --- p.25 / Chapter 2.2 --- General form and factors of block-diagonal Hessian matrices --- p.25 / Chapter 2.2.1 --- General form of block-diagonal Hessian matrices --- p.25 / Chapter 2.2.2 --- Factors of block-diagonal Hessian matrices --- p.27 / Chapter 2.3 --- Four particular block-diagonal Hessian matrices --- p.28 / Chapter 2.3.1 --- Correlation block-diagonal Hessian matrix --- p.29 / Chapter 2.3.2 --- One-unit block-diagonal Hessian matrix --- p.35 / Chapter 2.3.3 --- Sub-network block-diagonal Hessian matrix --- p.35 / Chapter 2.3.4 --- Layer block-diagonal Hessian matrix --- p.36 / Chapter 2.4 --- Updating methods --- p.40 / Chapter Chapter 3 --- Data set and setup of experiments --- p.41 / Chapter 3.1 --- Introduction --- p.41 / Chapter 3.2 --- Data set --- p.41 / Chapter 3.2.1 --- Single sine --- p.41 / Chapter 3.2.2 --- Composite sine --- p.42 / Chapter 3.2.3 --- Sunspot --- p.43 / Chapter 3.3 --- Choices of recurrent neural network parameters and initialization methods --- p.44 / Chapter 3.3.1 --- "Choices of numbers of input, hidden and output units" --- p.45 / Chapter 3.3.2 --- Initial hidden states --- p.45 / Chapter 3.3.3 --- Weight initialization method --- p.45 / Chapter 3.4 --- Method of dealing with over-fitting --- p.47 / Chapter Chapter 4 --- Updating methods --- p.48 / Chapter 4.1 --- Introduction --- p.48 / Chapter 4.2 --- Asynchronous updating method --- p.49 / Chapter 4.2.1 --- Algorithm --- p.49 / Chapter 4.2.2 --- Method of study --- p.50 / Chapter 4.2.3 --- Performance --- p.51 / Chapter 4.2.4 --- Investigation on poor generalization --- p.52 / Chapter 4.2.4.1 --- Hidden states --- p.52 / Chapter 4.2.4.2 --- Incoming weight magnitudes of the hidden units --- p.54 / Chapter 4.2.4.3 --- Weight change against time --- p.56 / Chapter 4.3 --- Asynchronous updating with constraint method --- p.68 / Chapter 4.3.1 --- Algorithm --- p.68 / Chapter 4.3.2 --- Method of study --- p.69 / Chapter 4.3.3 --- Performance --- p.70 / Chapter 4.3.3.1 --- Generalization performance --- p.70 / Chapter 4.3.3.2 --- Training time performance --- p.71 / Chapter 4.3.4 --- Hidden states and incoming weight magnitudes of the hidden units --- p.73 / Chapter 4.3.4.1 --- Hidden states --- p.73 / Chapter 4.3.4.2 --- Incoming weight magnitudes of the hidden units --- p.73 / Chapter 4.4 --- Synchronous updating methods --- p.84 / Chapter 4.4.1 --- Single λ and multiple λ's synchronous updating methods --- p.84 / Chapter 4.4.1.1 --- Algorithm of single λ synchronous updating method --- p.84 / Chapter 4.4.1.2 --- Algorithm of multiple λ's synchronous updating method --- p.85 / Chapter 4.4.1.3 --- Method of study --- p.87 / Chapter 4.4.1.4 --- Performance --- p.87 / Chapter 4.4.1.5 --- Investigation on long training time: analysis of λ --- p.89 / Chapter 4.4.2 --- Multiple λ's with line search synchronous updating method --- p.97 / Chapter 4.4.2.1 --- Algorithm --- p.97 / Chapter 4.4.2.2 --- Performance --- p.98 / Chapter 4.4.2.3 --- Comparison of λ --- p.100 / Chapter 4.5 --- Comparison between asynchronous and synchronous updating methods --- p.101 / Chapter 4.5.1 --- Final training time --- p.101 / Chapter 4.5.2 --- Computation load per complete weight update --- p.102 / Chapter 4.5.3 --- Convergence speed --- p.103 / Chapter 4.6 --- Comparison between our proposed methods and the gradient descent method with adaptive learning rate and momentum --- p.111 / Chapter Chapter 5 --- Number and sizes of the blocks --- p.113 / Chapter 5.1 --- Introduction --- p.113 / Chapter 5.2 --- Performance --- p.113 / Chapter 5.2.1 --- Method of study --- p.113 / Chapter 5.2.2 --- Trend of performance --- p.115 / Chapter 5.2.2.1 --- Asynchronous updating method --- p.115 / Chapter 5.2.2.2 --- Synchronous updating method --- p.116 / Chapter 5.3 --- Computation load per complete weight update --- p.116 / Chapter 5.4 --- Convergence speed --- p.117 / Chapter 5.4.1 --- Trend of inverse of convergence speed --- p.117 / Chapter 5.4.2 --- Factors affecting the convergence speed --- p.117 / Chapter Chapter 6 --- Weight-grouping methods --- p.125 / Chapter 6.1 --- Introduction --- p.125 / Chapter 6.2 --- Training time and generalization performance of different weight-grouping methods --- p.125 / Chapter 6.2.1 --- Method of study --- p.125 / Chapter 6.2.2 --- Performance --- p.126 / Chapter 6.3 --- Degree of approximation of block-diagonal Hessian matrix with different weight- grouping methods --- p.128 / Chapter 6.3.1 --- Method of study --- p.128 / Chapter 6.3.2 --- Performance --- p.128 / Chapter Chapter 7 --- Discussion --- p.150 / Chapter 7.1 --- Advantages and disadvantages of using block-diagonal Hessian matrix --- p.150 / Chapter 7.1.1 --- Advantages --- p.150 / Chapter 7.1.2 --- Disadvantages --- p.151 / Chapter 7.2 --- Analysis of computation complexity --- p.151 / Chapter 7.2.1 --- Trend of computation complexity of each calculation --- p.154 / Chapter 7.2.2 --- Batch mode of updating --- p.155 / Chapter 7.2.3 --- Sequential mode of updating --- p.155 / Chapter 7.3 --- Analysis of storage complexity --- p.156 / Chapter 7.3.1 --- Trend of storage complexity of each set of variables --- p.157 / Chapter 7.3.2 --- Trend of overall storage complexity --- p.157 / Chapter 7.4 --- Parallel implementation --- p.158 / Chapter 7.5 --- Alternative implementation of weight change constraint --- p.158 / Chapter Chapter 8 --- Conclusions --- p.160 / References --- p.162
215

ForeNet: fourier recurrent neural networks for time series prediction.

January 2001 (has links)
Ying-Qian Zhang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 115-124). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Objective --- p.2 / Chapter 1.3 --- Contributions --- p.3 / Chapter 1.4 --- Thesis Overview --- p.4 / Chapter 2 --- Literature Review --- p.6 / Chapter 2.1 --- Takens' Theorem --- p.6 / Chapter 2.2 --- Linear Models for Prediction --- p.7 / Chapter 2.2.1 --- Autoregressive Model --- p.7 / Chapter 2.2.2 --- Moving Average Model --- p.8 / Chapter 2.2.3 --- Autoregressive-moving Average Model --- p.9 / Chapter 2.2.4 --- Fitting a Linear Model to a Given Time Series --- p.9 / Chapter 2.2.5 --- State-space Reconstruction --- p.10 / Chapter 2.3 --- Neural Network Models for Time Series Processing --- p.11 / Chapter 2.3.1 --- Feed-forward Neural Networks --- p.11 / Chapter 2.3.2 --- Recurrent Neural Networks --- p.14 / Chapter 2.3.3 --- Training Algorithms for Recurrent Networks --- p.18 / Chapter 2.4 --- Combining Neural Networks and other approximation techniques --- p.22 / Chapter 3 --- ForeNet: Model and Representation --- p.24 / Chapter 3.1 --- Fourier Recursive Prediction Equation --- p.24 / Chapter 3.1.1 --- Fourier Analysis of Time Series --- p.25 / Chapter 3.1.2 --- Recursive Form --- p.25 / Chapter 3.2 --- Fourier Recurrent Neural Network Model (ForeNet) --- p.27 / Chapter 3.2.1 --- Neural Networks Representation --- p.28 / Chapter 3.2.2 --- Architecture of ForeNet --- p.29 / Chapter 4 --- ForeNet: Implementation --- p.32 / Chapter 4.1 --- Improvement on ForeNet --- p.33 / Chapter 4.1.1 --- Number of Hidden Neurons --- p.33 / Chapter 4.1.2 --- Real-valued Outputs --- p.34 / Chapter 4.2 --- Parameters Initialization --- p.37 / Chapter 4.3 --- Application of ForeNet: the Process of Time Series Prediction --- p.38 / Chapter 4.4 --- Some Implications --- p.39 / Chapter 5 --- ForeNet: Initialization --- p.40 / Chapter 5.1 --- Unfolded Form of ForeNet --- p.40 / Chapter 5.2 --- Coefficients Analysis --- p.43 / Chapter 5.2.1 --- "Analysis of the Coefficients Set, vn " --- p.43 / Chapter 5.2.2 --- "Analysis of the Coefficients Set, μn(d) " --- p.44 / Chapter 5.3 --- Experiments of ForeNet Initialization --- p.47 / Chapter 5.3.1 --- Objective and Experiment Setting --- p.47 / Chapter 5.3.2 --- Prediction of Sunspot Series --- p.49 / Chapter 5.3.3 --- Prediction of Mackey-Glass Series --- p.53 / Chapter 5.3.4 --- Prediction of Laser Data --- p.56 / Chapter 5.3.5 --- Three More Series --- p.59 / Chapter 5.4 --- Some Implications on the Proposed Initialization Method --- p.63 / Chapter 6 --- ForeNet: Learning Algorithms --- p.67 / Chapter 6.1 --- Complex Real Time Recurrent Learning (CRTRL) --- p.68 / Chapter 6.2 --- Batch-mode Learning --- p.70 / Chapter 6.3 --- Time Complexity --- p.71 / Chapter 6.4 --- Property Analysis and Experimental Results --- p.72 / Chapter 6.4.1 --- Efficient initialization:compared with random initialization --- p.74 / Chapter 6.4.2 --- Complex-valued network:compared with real-valued net- work --- p.78 / Chapter 6.4.3 --- Simple architecture:compared with ring-structure RNN . --- p.79 / Chapter 6.4.4 --- Linear model: compared with nonlinear ForeNet --- p.80 / Chapter 6.4.5 --- Small number of hidden units --- p.88 / Chapter 6.5 --- Comparison with Some Other Models --- p.89 / Chapter 6.5.1 --- Comparison with AR model --- p.91 / Chapter 6.5.2 --- Comparison with TDNN Networks and FIR Networks . --- p.93 / Chapter 6.5.3 --- Comparison to a few more results --- p.94 / Chapter 6.6 --- Summarization --- p.95 / Chapter 7 --- Learning and Prediction: On-Line Training --- p.98 / Chapter 7.1 --- On-Line Learning Algorithm --- p.98 / Chapter 7.1.1 --- Advantages and Disadvantages --- p.98 / Chapter 7.1.2 --- Training Process --- p.99 / Chapter 7.2 --- Experiments --- p.101 / Chapter 7.3 --- Predicting Stock Time Series --- p.105 / Chapter 8 --- Discussions and Conclusions --- p.109 / Chapter 8.1 --- Limitations of ForeNet --- p.109 / Chapter 8.2 --- Advantages of ForeNet --- p.111 / Chapter 8.3 --- Future Works --- p.112 / Bibliography --- p.115
216

Exploiting the GPU power for image-based relighting and neural network.

January 2006 (has links)
Wei Dan. / Thesis submitted in: October 2005. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 93-101). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Our applications --- p.1 / Chapter 1.3 --- Structure of the thesis --- p.2 / Chapter 2 --- The Programmable Graphics Hardware --- p.4 / Chapter 2.1 --- Introduction --- p.4 / Chapter 2.2 --- The evolution of programmable graphics hardware --- p.4 / Chapter 2.3 --- Benefit of GPU --- p.6 / Chapter 2.4 --- Architecture of programmable graphics hardware --- p.9 / Chapter 2.4.1 --- The graphics hardware pipeline --- p.9 / Chapter 2.4.2 --- Programmable graphics hardware --- p.10 / Chapter 2.5 --- Data Mapping in GPU --- p.12 / Chapter 2.6 --- Some limitations of current GPU --- p.13 / Chapter 2.7 --- Application and Related Work --- p.16 / Chapter 3 --- Image-based Relighting on GPU --- p.18 / Chapter 3.1 --- Introduction --- p.18 / Chapter 3.2 --- Image based relighting --- p.20 / Chapter 3.2.1 --- The plenoptic illumination function --- p.20 / Chapter 3.2.2 --- Sampling and Relighting --- p.21 / Chapter 3.3 --- Linear Approximation Function --- p.22 / Chapter 3.3.1 --- Spherical harmonics basis function --- p.22 / Chapter 3.3.2 --- Radial basis function --- p.23 / Chapter 3.4 --- Data Representation --- p.23 / Chapter 3.5 --- Relighting on GPU --- p.24 / Chapter 3.5.1 --- Directional light source relighting --- p.27 / Chapter 3.5.2 --- Point light source relighting --- p.28 / Chapter 3.6 --- Experiment --- p.32 / Chapter 3.6.1 --- Visual Evaluation --- p.32 / Chapter 3.6.2 --- Statistic Evaluation --- p.33 / Chapter 3.7 --- Conclusion --- p.34 / Chapter 4 --- Texture Compression on GPU --- p.40 / Chapter 4.1 --- Introduction --- p.40 / Chapter 4.2 --- The Feature of Texture Compression --- p.41 / Chapter 4.3 --- Implementation --- p.42 / Chapter 4.3.1 --- Encoding --- p.43 / Chapter 4.3.2 --- Decoding --- p.46 / Chapter 4.4 --- The Texture Compression based Relighting on GPU --- p.46 / Chapter 4.5 --- An improvement of the existing compression techniques --- p.48 / Chapter 4.6 --- Experiment Evaluation --- p.50 / Chapter 4.7 --- Conclusion --- p.51 / Chapter 5 --- Environment Relighting on GPU --- p.55 / Chapter 5.1 --- Overview --- p.55 / Chapter 5.2 --- Related Work --- p.56 / Chapter 5.3 --- Linear Approximation Algorithm --- p.58 / Chapter 5.3.1 --- Basic Architecture --- p.58 / Chapter 5.3.2 --- Relighting on SH --- p.60 / Chapter 5.3.3 --- Relighting on RBF --- p.61 / Chapter 5.3.4 --- Sampling the Environment --- p.63 / Chapter 5.4 --- Implementation on GPU --- p.64 / Chapter 5.5 --- Evaluation --- p.66 / Chapter 5.5.1 --- Visual evaluation --- p.66 / Chapter 5.5.2 --- Statistic evaluation --- p.67 / Chapter 5.6 --- Conclusion --- p.69 / Chapter 6 --- Neocognitron on GPU --- p.70 / Chapter 6.1 --- Overview --- p.70 / Chapter 6.2 --- Neocognitron --- p.72 / Chapter 6.3 --- Neocognitron on GPU --- p.75 / Chapter 6.3.1 --- Data Mapping and Connection Texture --- p.76 / Chapter 6.3.2 --- Convolution and Offset Computation --- p.77 / Chapter 6.3.3 --- Recognition Pipeline --- p.80 / Chapter 6.4 --- Experiments and Results --- p.81 / Chapter 6.4.1 --- Performance Evaluation --- p.81 / Chapter 6.4.2 --- Feature Visualization of Intermediate-Layer --- p.84 / Chapter 6.4.3 --- A Real-Time Tracking Test --- p.84 / Chapter 6.5 --- Conclusion --- p.87 / Chapter 7 --- Conclusion --- p.90 / Bibliography --- p.93
217

Dynamical analysis of complex-valued recurrent neural networks with time-delays. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Hu, Jin. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 140-153). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
218

Stability analysis and control applications of recurrent neural networks. / CUHK electronic theses & dissertations collection

January 2001 (has links)
Hu San-qing. / "December 2001." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 181-192). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
219

Analysis and design of recurrent neural networks and their applications to control and robotic systems. / CUHK electronic theses & dissertations collection / Digital dissertation consortium

January 2002 (has links)
Zhang Yu-nong. / "November 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 161-176). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
220

Design methodology and stability analysis of recurrent neural networks for constrained optimization. / CUHK electronic theses & dissertations collection

January 2000 (has links)
Xia You-sheng. / "June 2000." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (p. 152-165). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.

Page generated in 0.0984 seconds