Spelling suggestions: "subject:"neuralsymbolic integration"" "subject:"neurosymbolic integration""
1 |
Investigações sobre raciocínio e aprendizagem temporal em modelos conexionistas / Investigations about temporal reasoning and learning in connectionist modelsBorges, Rafael Vergara January 2007 (has links)
A inteligência computacional é considerada por diferentes autores da atualidade como o destino manifesto da Ciência da Computação. A modelagem de diversos aspectos da cognição, tais como aprendizagem e raciocínio, tem sido a motivação para o desenvolvimento dos paradigmas simbólico e conexionista da inteligência artificial e, mais recentemente, para a integração de ambos com o intuito de unificar as vantagens de cada abordagem em um modelo único. Para o desenvolvimento de sistemas inteligentes, bem como para diversas outras áreas da Ciência da Computação, o tempo é considerado como um componente essencial, e a integração de uma dimensão temporal nestes sistemas é fundamental para conseguir uma representação melhor do comportamento cognitivo. Neste trabalho, propomos o SCTL (Sequential Connectionist Temporal Logic), uma abordagem neuro-simbólica para integrar conhecimento temporal, representado na forma de programas em lógica, em redes neurais recorrentes, de forma que a caracterização semântica de ambas representações sejam equivalentes. Além da estratégia para realizar esta conversão entre representações, e da verificação formal da equivalência semântica, também realizamos uma comparação da estratégia proposta com relação a outros sistemas que realizam representação simbólica e temporal em redes neurais. Por outro lado, também descrevemos, de foma algorítmica, o comportamento desejado para as redes neurais geradas, para realizar tanto inferência quanto aprendizagem sob uma ótica temporal. Este comportamento é analisado em diversos experimentos, buscando comprovar o desempenho de nossa abordagem para a modelagem cognitiva considerando diferentes condições e aplicações. / Computational Intelligence is considered, by di erent authors in present days, the manifest destiny of Computer Science. The modelling of di erent aspects of cognition, such as learning and reasoning, has been a motivation for the integrated development of the symbolic and connectionist paradigms of artificial intelligence. More recently, such integration has led to the construction of models catering for integrated learning and reasoning. The integration of a temporal dimension into such systems is a relevant task as it allows for a richer representation of cognitive behaviour features, since time is considered an essential component in intelligent systems development. This work introduces SCTL (Sequential Connectionist Temporal Logic), a neuralsymbolic approach for integrating temporal knowledge, represented as logic programs, into recurrent neural networks. This integration is done in such a way that the semantic characterization of both representations are equivalent. Besides the strategy to achieve translation from one representation to another, and verification of the semantic equivalence, we also compare the proposed approach to other systems that perform symbolic and temporal representation in neural networks. Moreover, we describe the intended behaviour of the generated neural networks, for both temporal inference and learning through an algorithmic approach. Such behaviour is then evaluated by means several experiments, in order to analyse the performance of the model in cognitive modelling under di erent conditions and applications.
|
2 |
Investigações sobre raciocínio e aprendizagem temporal em modelos conexionistas / Investigations about temporal reasoning and learning in connectionist modelsBorges, Rafael Vergara January 2007 (has links)
A inteligência computacional é considerada por diferentes autores da atualidade como o destino manifesto da Ciência da Computação. A modelagem de diversos aspectos da cognição, tais como aprendizagem e raciocínio, tem sido a motivação para o desenvolvimento dos paradigmas simbólico e conexionista da inteligência artificial e, mais recentemente, para a integração de ambos com o intuito de unificar as vantagens de cada abordagem em um modelo único. Para o desenvolvimento de sistemas inteligentes, bem como para diversas outras áreas da Ciência da Computação, o tempo é considerado como um componente essencial, e a integração de uma dimensão temporal nestes sistemas é fundamental para conseguir uma representação melhor do comportamento cognitivo. Neste trabalho, propomos o SCTL (Sequential Connectionist Temporal Logic), uma abordagem neuro-simbólica para integrar conhecimento temporal, representado na forma de programas em lógica, em redes neurais recorrentes, de forma que a caracterização semântica de ambas representações sejam equivalentes. Além da estratégia para realizar esta conversão entre representações, e da verificação formal da equivalência semântica, também realizamos uma comparação da estratégia proposta com relação a outros sistemas que realizam representação simbólica e temporal em redes neurais. Por outro lado, também descrevemos, de foma algorítmica, o comportamento desejado para as redes neurais geradas, para realizar tanto inferência quanto aprendizagem sob uma ótica temporal. Este comportamento é analisado em diversos experimentos, buscando comprovar o desempenho de nossa abordagem para a modelagem cognitiva considerando diferentes condições e aplicações. / Computational Intelligence is considered, by di erent authors in present days, the manifest destiny of Computer Science. The modelling of di erent aspects of cognition, such as learning and reasoning, has been a motivation for the integrated development of the symbolic and connectionist paradigms of artificial intelligence. More recently, such integration has led to the construction of models catering for integrated learning and reasoning. The integration of a temporal dimension into such systems is a relevant task as it allows for a richer representation of cognitive behaviour features, since time is considered an essential component in intelligent systems development. This work introduces SCTL (Sequential Connectionist Temporal Logic), a neuralsymbolic approach for integrating temporal knowledge, represented as logic programs, into recurrent neural networks. This integration is done in such a way that the semantic characterization of both representations are equivalent. Besides the strategy to achieve translation from one representation to another, and verification of the semantic equivalence, we also compare the proposed approach to other systems that perform symbolic and temporal representation in neural networks. Moreover, we describe the intended behaviour of the generated neural networks, for both temporal inference and learning through an algorithmic approach. Such behaviour is then evaluated by means several experiments, in order to analyse the performance of the model in cognitive modelling under di erent conditions and applications.
|
3 |
Investigações sobre raciocínio e aprendizagem temporal em modelos conexionistas / Investigations about temporal reasoning and learning in connectionist modelsBorges, Rafael Vergara January 2007 (has links)
A inteligência computacional é considerada por diferentes autores da atualidade como o destino manifesto da Ciência da Computação. A modelagem de diversos aspectos da cognição, tais como aprendizagem e raciocínio, tem sido a motivação para o desenvolvimento dos paradigmas simbólico e conexionista da inteligência artificial e, mais recentemente, para a integração de ambos com o intuito de unificar as vantagens de cada abordagem em um modelo único. Para o desenvolvimento de sistemas inteligentes, bem como para diversas outras áreas da Ciência da Computação, o tempo é considerado como um componente essencial, e a integração de uma dimensão temporal nestes sistemas é fundamental para conseguir uma representação melhor do comportamento cognitivo. Neste trabalho, propomos o SCTL (Sequential Connectionist Temporal Logic), uma abordagem neuro-simbólica para integrar conhecimento temporal, representado na forma de programas em lógica, em redes neurais recorrentes, de forma que a caracterização semântica de ambas representações sejam equivalentes. Além da estratégia para realizar esta conversão entre representações, e da verificação formal da equivalência semântica, também realizamos uma comparação da estratégia proposta com relação a outros sistemas que realizam representação simbólica e temporal em redes neurais. Por outro lado, também descrevemos, de foma algorítmica, o comportamento desejado para as redes neurais geradas, para realizar tanto inferência quanto aprendizagem sob uma ótica temporal. Este comportamento é analisado em diversos experimentos, buscando comprovar o desempenho de nossa abordagem para a modelagem cognitiva considerando diferentes condições e aplicações. / Computational Intelligence is considered, by di erent authors in present days, the manifest destiny of Computer Science. The modelling of di erent aspects of cognition, such as learning and reasoning, has been a motivation for the integrated development of the symbolic and connectionist paradigms of artificial intelligence. More recently, such integration has led to the construction of models catering for integrated learning and reasoning. The integration of a temporal dimension into such systems is a relevant task as it allows for a richer representation of cognitive behaviour features, since time is considered an essential component in intelligent systems development. This work introduces SCTL (Sequential Connectionist Temporal Logic), a neuralsymbolic approach for integrating temporal knowledge, represented as logic programs, into recurrent neural networks. This integration is done in such a way that the semantic characterization of both representations are equivalent. Besides the strategy to achieve translation from one representation to another, and verification of the semantic equivalence, we also compare the proposed approach to other systems that perform symbolic and temporal representation in neural networks. Moreover, we describe the intended behaviour of the generated neural networks, for both temporal inference and learning through an algorithmic approach. Such behaviour is then evaluated by means several experiments, in order to analyse the performance of the model in cognitive modelling under di erent conditions and applications.
|
4 |
Neural-Symbolic Integration / Neuro-Symbolische IntegrationBader, Sebastian 15 December 2009 (has links) (PDF)
In this thesis, we discuss different techniques to bridge the gap between two different approaches to artificial intelligence: the symbolic and the connectionist paradigm. Both approaches have quite contrasting advantages and disadvantages. Research in the area of neural-symbolic integration aims at bridging the gap between them.
Starting from a human readable logic program, we construct connectionist systems, which behave equivalently. Afterwards, those systems can be trained, and later the refined knowledge be extracted.
|
5 |
Artificial development of neural-symbolic networksTownsend, Joseph Paul January 2014 (has links)
Artificial neural networks (ANNs) and logic programs have both been suggested as means of modelling human cognition. While ANNs are adaptable and relatively noise resistant, the information they represent is distributed across various neurons and is therefore difficult to interpret. On the contrary, symbolic systems such as logic programs are interpretable but less adaptable. Human cognition is performed in a network of biological neurons and yet is capable of representing symbols, and therefore an ideal model would combine the strengths of the two approaches. This is the goal of Neural-Symbolic Integration [4, 16, 21, 40], in which ANNs are used to produce interpretable, adaptable representations of logic programs and other symbolic models. One neural-symbolic model of reasoning is SHRUTI [89, 95], argued to exhibit biological plausibility in that it captures some aspects of real biological processes. SHRUTI's original developers also suggest that further biological plausibility can be ascribed to the fact that SHRUTI networks can be represented by a model of genetic development [96, 120]. The aims of this thesis are to support the claims of SHRUTI's developers by producing the first such genetic representation for SHRUTI networks and to explore biological plausibility further by investigating the evolvability of the proposed SHRUTI genome. The SHRUTI genome is developed and evolved using principles from Generative and Developmental Systems and Artificial Development [13, 105], in which genomes use indirect encoding to provide a set of instructions for the gradual development of the phenotype just as DNA does for biological organisms. This thesis presents genomes that develop SHRUTI representations of logical relations and episodic facts so that they are able to correctly answer questions on the knowledge they represent. The evolvability of the SHRUTI genomes is limited in that an evolutionary search was able to discover genomes for simple relational structures that did not include conjunction, but could not discover structures that enabled conjunctive relations or episodic facts to be learned. Experiments were performed to understand the SHRUTI fitness landscape and demonstrated that this landscape is unsuitable for navigation using an evolutionary search. Complex SHRUTI structures require that necessary substructures must be discovered in unison and not individually in order to yield a positive change in objective fitness that informs the evolutionary search of their discovery. The requirement for multiple substructures to be in place before fitness can be improved is probably owed to the localist representation of concepts and relations in SHRUTI. Therefore this thesis concludes by making a case for switching to more distributed representations as a possible means of improving evolvability in the future.
|
6 |
Neural-Symbolic IntegrationBader, Sebastian 05 October 2009 (has links)
In this thesis, we discuss different techniques to bridge the gap between two different approaches to artificial intelligence: the symbolic and the connectionist paradigm. Both approaches have quite contrasting advantages and disadvantages. Research in the area of neural-symbolic integration aims at bridging the gap between them.
Starting from a human readable logic program, we construct connectionist systems, which behave equivalently. Afterwards, those systems can be trained, and later the refined knowledge be extracted.
|
Page generated in 0.1201 seconds