• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle de la neurogénèse bulbaire dans la mémorisation des odeurs chez la souris

Belnoue, Laure 07 December 2009 (has links)
Le système constitué de la zone sous ventriculaire (ZSV) et du bulbe olfactif (BO) est l’une des deux régions cérébrales capables à l’âge adulte de produire de nouveaux neurones. La mise en évidence de cette neurogénèse adulte bulbaire a suscité un grand nombre d’interrogations quant à son rôle fonctionnel. Cependant les études réalisées dans ce domaine sont rares et contradictoires. L’objectif de cette thèse a été d’étudier l’impact de différentes expériences olfactives sur la neurogénèse afin de mieux comprendre son rôle fonctionnel. Nous avons choisi pour cela deux approches : d’une part l’étude de l’implication des néoneurones bulbaires lors de deux tâches d’apprentissage olfactif mettant en œuvre des odeurs neutres ; et d’autre part l’étude du rôle de ces néoneurones dans une situation de vie où l’olfaction joue un rôle primordial et où des variations de neurogénèse ont été rapportées: la maternité. Dans un premier temps, nous avons mis en évidence grâce à une stratégie d’anatomie fonctionnelle que les néoneurones de 5 semaines étaient recrutés lors d’un apprentissage de discrimination olfactive, mais pas lors de la restitution de cette information. Dans un deuxième temps, nous avons mis en évidence que la maternité améliorait les performances olfactives, et que cette amélioration était abolie par un stress gestationnel. Cependant, nous n’avons pas pu mettre en relation ces modifications de performances olfactives liées à la maternité et au stress avec des variations de neurogénèse. Nos travaux supportent l’hypothèse selon laquelle les néoneurones bulbaires sont impliqués dans la discrimination olfactive et mettent en évidence pour la première fois un impact de la maternité, qu’elle soit normale ou pathologique, sur les performances olfactives des mères. / In the mammalian brain, the subventricular zone (ZSV) and olfactory bulb (BO) system is a region where new neurons are continuously added throughout adulthood. While the functional consequences of continuous hippocampal neurogenesis have been extensively studied, the role of olfactory adult-born neurons remains more elusive. In particular, the involvement of these newborn neurons in odor discrimination and long-term odor memory is still a matter of debate. To address this question, we used two approaches. In the first one, we studied the recruitment of granular olfactory newborn neurons in two different tasks of olfactory learning with neutral odors. In the second one we studied the role of olfactory newborn neurons in a life situation where olfaction is crucial and where an increase in olfactory neurogenesis was reported, i.e. motherhood. In the first study, we found that odor discrimination learning recruited newborn neurons preferentially over preexisting ones, while odor memory restitution did not specifically activate newborn cells. Results of our second study indicate that motherhood improves olfactory memory and that this enhancement is abolished by a gestational stress. However, in our experimental conditions, we could not relate variations in neurogenesis with the modifications of olfactory performances linked to motherhood or stress. In conclusion our work brings new data in support of a functional role for newborn neurons in olfactory discrimination and shows for the first time an impact of motherhood, whether normal or pathological, on the olfactory performances of mothers.
2

Caractérisation des facteurs de régulation de la prolifération des cellules souches neurales dans le cerveau adulte / Characterization of the factors regulating the proliferation of adult neural stem cells

Daynac, Mathieu 30 September 2013 (has links)
Les cellules souches neurales quiescentes (CSN) sont le réservoir de la neurogenèse adulte, permettant de produire des nouveaux neurones tout au long de la vie. Cependant, la neurogenèse décroit au cours du vieillissement, provoquant des déclins cognitifs incurables. Afin de mieux comprendre les mécanismes qui contrôlent la prolifération des CSN, nous avons mis en place une méthode de tri par cytométrie en flux qui permet pour la première fois d’isoler les CSN quiescentes et leurs cellules filles dans la ZSV adulte murine. Cette technique nous a permis de prouver que le blocage de la voie GABAAR in vivo provoque l’entrée en cycle des CSN quiescentes. Ainsi, les signaux GABA produits par les neuroblastes dans la ZSV permettent de maintenir les CSN dans leur état de quiescence. Au cours du vieillissement, nous montrons que la production progressive de TGFβ1 par les cellules endothéliales de la niche allonge la phase G1 des CSN activées, diminuant sensiblement la production de nouveaux neurones, sans toutefois diminuer le stock de CSN. Nous mettons ainsi en évidence deux voies majeures contrôlant la prolifération des CSN in vivo, la voie du GABAAR et la voie TGF-β/Smad-3. En vue d’une application thérapeutique, nous prouvons que leur blocage pharmacologique permet de stimuler efficacement la neurogenèse in vivo. / Quiescent neural stem cells (NSCs) are considered the reservoir for adult neurogenesis, generating new neurons throughout life. However, neurogenesis decreases during aging, causing a progressive decline that is currently untreatable. To study the regulatory mechanisms of NSCs proliferation, we set up a new technique allowing the isolation of quiescent NSCs and their progeny. We show that GABAAR directly regulates NSCs quiescence in vivo as the depletion of GABA-producing neuroblasts or GABAAR pathway pharmacological blockade provoked NSCs cell cycle entry in the SVZ. During aging, the stock of NSCs is not perturbed, but we show that an over-production of TGFβ1 by brain endothelial cells directly lengthens activated NSCs G1 phase, strongly decreasing the production of new neurons. These findings highlight GABAAR and TGF-β/Smad-3 as two major pathways controlling NSCs proliferation. In line with a future therapeutic application, we also prove that their blocking stimulates endogenous neurogenesis in vivo.
3

Caractérisation des facteurs de régulation de la prolifération des cellules souches neurales dans le cerveau adulte

Daynac, Mathieu 30 September 2013 (has links) (PDF)
Les cellules souches neurales quiescentes (CSN) sont le réservoir de la neurogenèse adulte, permettant de produire des nouveaux neurones tout au long de la vie. Cependant, la neurogenèse décroit au cours du vieillissement, provoquant des déclins cognitifs incurables. Afin de mieux comprendre les mécanismes qui contrôlent la prolifération des CSN, nous avons mis en place une méthode de tri par cytométrie en flux qui permet pour la première fois d'isoler les CSN quiescentes et leurs cellules filles dans la ZSV adulte murine. Cette technique nous a permis de prouver que le blocage de la voie GABAAR in vivo provoque l'entrée en cycle des CSN quiescentes. Ainsi, les signaux GABA produits par les neuroblastes dans la ZSV permettent de maintenir les CSN dans leur état de quiescence. Au cours du vieillissement, nous montrons que la production progressive de TGFβ1 par les cellules endothéliales de la niche allonge la phase G1 des CSN activées, diminuant sensiblement la production de nouveaux neurones, sans toutefois diminuer le stock de CSN. Nous mettons ainsi en évidence deux voies majeures contrôlant la prolifération des CSN in vivo, la voie du GABAAR et la voie TGF-β/Smad-3. En vue d'une application thérapeutique, nous prouvons que leur blocage pharmacologique permet de stimuler efficacement la neurogenèse in vivo.
4

Mécanismes de développement des cellules épendymaires : origine et lignage des cellules épendymaires dans le cerveau des mammifères / Mechanisms of ependymal cells specification

Daclin, Marie 28 June 2018 (has links)
Les cellules épendymaires sont des cellules multiciliées qui tapissent les parois de toutes les cavités du cerveau. Une fois différenciées, ces cellules ne se divisent plus au cours de la vie. Le battement de ces multiples cils motiles joue un rôle important pour maintenir un flux constant de liquide cérébrospinal à travers toutes les cavités cérébrales. Les cellules épendymaires assurent également des fonctions critiques d’échanges moléculaires avec le liquide cérébrospinal. Dans son ensemble, l’implication des cellules épendymaires et de leurs cils motiles s’avère d’une importance majeure dans le maintien des circuits neuraux ainsi que dans le fonctionnement plus global du cerveau. Récemment, une nouvelle caractéristique des cellules épendymaires a été identifiée ; elles font partie d’un microenvironnement appelé une « niche » centrée autour de cellules souches neurales dans le cerveau du rongeur adulte. Ces cellules souches neurales adultes sont capables de produire de nouveaux neurones qui migreront vers le bulbe olfactif des rongeurs adultes. Concernant leur origine, il a été montré que les cellules épendymaires multiciliées dérivent des cellules souches neurales durant les stades tardifs embryonnaires. Ces mêmes cellules souches peuvent d’ailleurs donner naissance à la plupart des différents types de cellules du cerveau. Cependant, les mécanismes par lesquels les cellules souches décident de leur destin cellulaire restent largement méconnus. Dans ce projet, nous étudions quel type de division donne naissance à des cellules épendymaires et nous nous intéressons également au lignage épendymaire. Nos données suggèrent que les cellules épendymaires ne migrent pas après leur dernière division et qu’elles restent à proximité de l’endroit où elles ont été produites. Chose particulièrement intéressante, nous montrons que les cellules épendymaires peuvent être générées par division symétrique ou asymétrique. Nos résultats révèlent aussi que les cellules souches neurales embryonnaires se divisent de manière asymétrique pour donner naissance à la fois à une celluleépendymaire et à une cellule souche neurale adulte. Ces données viennent s’ajouter à la connaissance actuelle que nous avons du développement du cerveau. De plus, elles pourraient contribuer à ouvrir de nouvelles perspectives et stratégies thérapeutiques pour soigner les maladies neurodégénératives à beaucoup plus long terme. / Ependymal cells are multiciliated cells lining the walls of all brain cavities. Once they are mature, they do not divide during life. Their motile ciliary beating endorses a crucial role in maintaining a proper flow of cerebrospinal fluid throughout all brain cavities. Ependymal cells also ensure critical molecular exchanges of the cerebrospinal fluid. On the whole, the involvement of ependymal cells and their multiple motile cilia in the maintenance of the neural circuits and more globally in the well-functioning of the entire brain have proven paramount. More recently, a new characteristic of ependymal cells has been brought to light. Namely, they are part of a microenvironment so called a “niche” surrounding adult neural stem cells in the adult rodent brain. Noteworthy, these adult neuralstem cells are capable of producing new neurons that will migrate to the olfactory bulb of rodents. In terms of their origin, it was shown that multiciliated ependymal cells derive from neural stem cells during late embryonic stages. Besides, the same stem cells can give rise to most cell types of the brain. However, little is known about how fate-decision is made in neural stem cells. In this project, we tackle more particularly how multiciliated ependymal cells arise from the neural stem cells. Most specifically, we address the type of celldivision and the ependymal cell lineage. We find that ependymal cells are not migrating subsequent to their last division, but rather stay where they were first produced. Most interestingly, they can be generated through both symmetric and asymmetric cell division. We also show that embryonic neural stem cells divide asymmetrically to give rise to both an ependymal cell and an adult stem cell. We are confident that these data bring major new insights in the current understanding of neural development. Additionally, these findingscould contribute in opening new therapeutic perspectives and strategies to cure neurodegenerative diseases in a much longer term.

Page generated in 0.0664 seconds