• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Connectivity and Processing in the Macaque Cerebral Cortex / Connectivité et traitement de l'information dans le cortex cérébral du macaque

Gariel, Marie-Alice 11 January 2017 (has links)
Pour comprendre comment le cortex cérébral extrait du sens et produit des actions à partir des informations sensorielles, il est nécessaire de comprendre à la fois son architecture et ses états dynamiques. Dans la présente thèse nous avons abordé cette relation structure-fonction au niveau des aires cérébrales, leurs connections et leurs interactions au sein du réseau cortical. Les aires sont connectées entre elles par deux grands types de projections axonales. D'une part, les connections « feedforward » (littéralement « antéroactives ») transmettent l'information des aires sensorielles aux aires de plus haut niveau dans la hiérarchie corticale et dont l'activité sous-tend des représentations plus abstraites. À l'inverse, les connections feedback (rétroactives) relient des aires dans la direction descendante de la hiérarchie corticale, vers les aires sensorielles primaires. Pour explorer les rôles respectifs des connections feedforward et feedback nous avons utilisé une triple approche. Premièrement, nous avons mis en évidence une asymétrie fonctionnelle très nette entre propagation feedforward et feedback grâce à des enregistrements et de la microstimulation électrique dans les aires V1 et V4 de macaques en comportement. D'autre part, nous avons étudié les propriétés globales du réseau cortical grâce à une riche base de données de connectivité basée sur des injections de traceurs fluorescents, et décrit une propriété générale et fondamentale de l'organisation corticale. Enfin, nous avons combiné des propriétés anatomiques des aires corticales et les données de connectivité dans un modèle dynamique à grande échelle du cortex / To understand how the cerebral cortex does what it does, it is necessary to elucidate both how its dynamic states are correlated with the functions it performs, and how it is organised. Many functional and anatomical gradients have been described that reflect the hierarchical abstraction at the heart of cortical computation. It was showed that two flavours of cortical connections exist, and that in the visual cortex they happen to transport information in opposite directions along this gradient. It was also hypothesised that other modalities exhibit the same type of gradient in their respective domains. However, studying requires knowledge of the architecture at different levels (such as the cortical column) and a causal understanding of the functional properties of these types of connections. First, we have studied the dynamics of both feedforward and feedback propagation in the visual system of awake, behaving macaque monkeys. Using the causal method of electrical microstimulation and recording, we have found a dynamic signature of each type of projections and an asymmetry in the way each type of input interacts with ongoing activity in a given visual area. Secondly, thanks to a rich and systematic data set in the macaque, we have found a fundamental organisational principle of the embedded and weighted cortical network that holds also in the more detailed level of neuronal connections inside an area. Finally, we have combined known anatomical gradients with actual inter-areal connectivity into a dynamic model, and here we show how it relates to both the ordering of areas along a hierarchical gradient and the wiring diagram of the cortical network
2

Détection et modélisation biomathématique d'évènements transitoires dans les signaux EEG intracérébraux : application au suivi de l'épileptogenèse dans un modèle murin / Detection and computational modeling of transient events from intracranial EEG : application to the monitoring of epileptogenesis in a mouse model

Huneau, Clément 11 June 2013 (has links)
Les épilepsies acquises se déclarent après un processus graduel appelé épileptogenèse. Bien que cliniquement silencieux, ce processus implique des modifications fonctionnelles observables notamment par électroencéphalographie. Cette thèse vise i) à identifier des marqueurs électrophysiologiques apparaissant au cours de l’épileptogenèse, et ii) à comprendre les modifications physiopathologiques sous-jacentes responsables de ces marqueurs et de leur évolution temporelle. Dans un premier temps, nous avons, dans un modèle d’épilepsie partielle chez la souris, monitoré des signaux électrophysiologiques intracérébraux pendant la mise en place de la maladie. Nous avons observé dans ces signaux expérimentaux, l’émergence d’événements transitoires pathologiques appelés pointes épileptiques. Nous avons développé des méthodes de traitement du signal pour détecter et caractériser automatiquement ces événements. Ainsi, nous avons pu mettre en évidence certains changements dans la forme des pointes épileptiques au cours de l’épileptogenèse ; en particulier l’apparition et l’augmentation d’une onde qui suit la pointe épileptique. Une hypothèse défendue dans ces travaux est que ces changements morphologiques peuvent constituer des marqueurs de l’épileptogenèse dans ce modèle animal. Dans un second temps, afin d’interpréter ces modifications électrophysiologiques en termes de processus neurophysiologiques sous-jacents, nous avons implémenté un modèle biomathématique, physiologiquement argumenté, capable de simuler des pointes épileptiques. Formellement, ce modèle est un système dynamique non linéaire qui reproduit les interactions synaptiques (excitatrices et inhibitrices) dans une population de neurones. Une analyse de sensibilité de ce modèle a permis de mettre en évidence le rôle critique de certains paramètres de connectivité dans la morphologie des pointes. Nos résultats montrent en effet, qu’une diminution de l’inhibition GABAergique entraîne un accroissement de l’onde dans les pointes épileptiques. À partir du modèle théorique, nous avons pu ainsi émettre des hypothèses sur les modifications opérant au cours du processus d’épileptogenèse. Ces hypothèses ont pu être en partie vérifiées expérimentalement en bloquant artificiellement l’inhibition GABAergique, dans le modèle in vivo chez la souris, et dans un modèle in vitro chez le rat. En conclusion, ce travail de thèse fournit, dans un modèle animal, un biomarqueur électrophysiologique de l’épileptogenèse et tente d’expliquer, grâce à une modélisation biomathématique, les processus neurophysiologiques sous-jacents qu’il reflète. / Acquired epilepsies occur after a process called epileptogenesis. Although clinically silent, this process involves some functional modifications which can be observed by electroencephalography. The objectives of this thesis are i) to identify electrophysiological markers occurring during epileptogenesis, and ii) to understand which underlying pathophysiological modifications are responsible for these markers and their evolution. Firstly, using an in vivo experimental mouse model of partial epilepsy, we have monitored intracranial electrophysiological signals during epileptogenesis. We observed the emergence of pathological transient events called epileptic spikes. We have developed signal processing methods in order to automatically detect and characterize these events. Hence, we observed and quantified morphological changes of epileptic spikes during epileptogenesis. In particular, we noticed the emergence and the increase of a wave which directly follows the spike component. In this work, we defend the hypothesis that these morphological modifications can constitute markers of the epileptogenesis process in this animal model of epilepsy. Secondly, in order to interpret these electrophysiological modifications in terms of underlying pathophysiological processes, we have implemented a computational model able to simulate epileptic spikes. This neural mass model is a neurophysiologically-plausible mesoscopic representation of synaptic interactions (excitation and inhibition) in the hippocampus. Based on a sensitivity analysis of model parameters, we were able to determine some connectivity parameters that play a key role in the morphology of simulated epileptic spikes. In particular, our results show that a diminution of GABAergic inhibition leads to an increase of the aforementioned wave. Thus, using this theoretical model, we defined some hypotheses about pathophysiological modifications occurring during the epileptogenesis process. One of these hypotheses has been confirmed in blocking GABAa receptors in the in vivo mouse model, as well as in an in vitro model (rat, organotypic slices). In summary, based on the shape features of epileptic spikes, we devised an electrophysiological biomarker of epileptogenesis observed in a mouse model but useful in Human studies as well. Moreover, a computational modeling approach has permitted to suggest which pathophysiological processes might underlie this biomarker.

Page generated in 0.0722 seconds