• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 14
  • 2
  • 1
  • Tagged with
  • 35
  • 18
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementação de um sistema de localização espacial de regiões cerebrais em tempo real para aplicação de TMS por co-registro com fMRI / Implementation of a System for Real Time Space Localization of Cerebral Regions for TMS Application by MRI Co-Register

Peres, André Salles Cunha 11 April 2008 (has links)
Nos últimos 20 anos tivemos um grande avanço na neurociência e nas técnicas de avaliação do sistema nervoso em humanos em uma tentativa inicial de compreensão de seu funcionamento. Colaboram com esse avanço técnicas como a eletroencefalografia (EEG), tomografia com-putadorizada (CT), tomografia por emissão de pósitron (PET), ressonância magnética funcional (fMRI), que geram mapas estatísticos de atividade cerebral, e a estimulação magnética transcrania-na (TMS), que se utiliza de pulsos de campo magnético, intensos e rápidos, de forma que a taxa de variação do fluxo magnético possa produzir uma estimulação cortical. No entanto a técnica de TMS ainda hoje utiliza parâmetros subjetivos para a determinação de um centro responsável por uma determinada atividade estimulada, os quais não possibilitam lo-calizar com precisão a região do córtex cerebral que está sendo estimulada por um pulso magnético. No intuito de eliminar essa subjetividade e estimularmos com precisão os centros de ativi-dade esse trabalho realiza um estudo do co-registro das técnicas de TMS e fMRI através de um neu-ronavegador que possibilita encontrar estruturas cerebrais sob uma determinada posição do escalpo. Inicialmente o estimulador foi caracterizado e um mapa de intensidade de campo magnético produ-zido pela bobina em forma de oito ou butterfly foi realizado por diferentes métodos. Em seguida um neuronavegador foi desenvolvido que permite fazer uma superposição das imagens de fMRI com o padrão de campos magnéticos produzido pela bobina. Pode-se variar a posição da bobina e observarem-se as regiões que provavelmente serão estimuladas pelo campo magnético. Com isso pode-se aperfeiçoar a estimulação. Para verificar a eficiência desse método estimulou-se o córtex motor de um grupo de 10 voluntários assintomáticos. O estímulo foi monitorado através de um eletromiógrafo posicionado no músculo abdutor do polegar da mão. Os resultados indicam que com o uso da neuronavegação foi possível estimular a região motora esperada em 100% dos voluntários estudados. / In the last 20 years we witnessed a great advance in neurosciences and evaluation techniques as an initial attempt for understanding of working principles of the human central nervous system Techniques such as electroencephalography (EEG), positron emission tomography (EEG), functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have produced grate advances in the understanding of human cerebral nervous system. fMRI generates statistical maps of the cerebral activity and TMS uses intense and fast magnetic pulses to produce a high rate magnetic flux variation to produce cortical electrical stimulation. However, even today TMS uses subjective parameters to establish an area responsible for a certain stimulated activity, that does not allow the precise cortical localization of the cortex area being stimulated by the magnetic pulse. Aiming to overcome this subjectiveness to more precisely stimulate the activity center this work investigates the use of a co-register method based on TMS and fMRI through the use of a neuronavigator that allows the location of brain structures below a certain scalp position. Initially the TMS was characterized and a map of the magnetic field intensity produced by the eight shaped or butterfly coils was determined by different methods. After this step a neuronavigator was devel-oped allowing a superposition of the magnetic field pattern with the fMRI images. The coil position can be varied and the possible stimulated regions can be visualized. This integration of information is expected to improve the TMS accuracy. To verify the efficacy of this method the motor cortex of 10 asymptomatic volunteers were stimulated. The stimulus was monitored with an electromyogram acquired in the hand thumb abductor muscle. The results shown that with the neuronavigation it was possible to stimulate the desired motor region in all the volunteers studied.
2

Implementação de um sistema de localização espacial de regiões cerebrais em tempo real para aplicação de TMS por co-registro com fMRI / Implementation of a System for Real Time Space Localization of Cerebral Regions for TMS Application by MRI Co-Register

André Salles Cunha Peres 11 April 2008 (has links)
Nos últimos 20 anos tivemos um grande avanço na neurociência e nas técnicas de avaliação do sistema nervoso em humanos em uma tentativa inicial de compreensão de seu funcionamento. Colaboram com esse avanço técnicas como a eletroencefalografia (EEG), tomografia com-putadorizada (CT), tomografia por emissão de pósitron (PET), ressonância magnética funcional (fMRI), que geram mapas estatísticos de atividade cerebral, e a estimulação magnética transcrania-na (TMS), que se utiliza de pulsos de campo magnético, intensos e rápidos, de forma que a taxa de variação do fluxo magnético possa produzir uma estimulação cortical. No entanto a técnica de TMS ainda hoje utiliza parâmetros subjetivos para a determinação de um centro responsável por uma determinada atividade estimulada, os quais não possibilitam lo-calizar com precisão a região do córtex cerebral que está sendo estimulada por um pulso magnético. No intuito de eliminar essa subjetividade e estimularmos com precisão os centros de ativi-dade esse trabalho realiza um estudo do co-registro das técnicas de TMS e fMRI através de um neu-ronavegador que possibilita encontrar estruturas cerebrais sob uma determinada posição do escalpo. Inicialmente o estimulador foi caracterizado e um mapa de intensidade de campo magnético produ-zido pela bobina em forma de oito ou butterfly foi realizado por diferentes métodos. Em seguida um neuronavegador foi desenvolvido que permite fazer uma superposição das imagens de fMRI com o padrão de campos magnéticos produzido pela bobina. Pode-se variar a posição da bobina e observarem-se as regiões que provavelmente serão estimuladas pelo campo magnético. Com isso pode-se aperfeiçoar a estimulação. Para verificar a eficiência desse método estimulou-se o córtex motor de um grupo de 10 voluntários assintomáticos. O estímulo foi monitorado através de um eletromiógrafo posicionado no músculo abdutor do polegar da mão. Os resultados indicam que com o uso da neuronavegação foi possível estimular a região motora esperada em 100% dos voluntários estudados. / In the last 20 years we witnessed a great advance in neurosciences and evaluation techniques as an initial attempt for understanding of working principles of the human central nervous system Techniques such as electroencephalography (EEG), positron emission tomography (EEG), functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have produced grate advances in the understanding of human cerebral nervous system. fMRI generates statistical maps of the cerebral activity and TMS uses intense and fast magnetic pulses to produce a high rate magnetic flux variation to produce cortical electrical stimulation. However, even today TMS uses subjective parameters to establish an area responsible for a certain stimulated activity, that does not allow the precise cortical localization of the cortex area being stimulated by the magnetic pulse. Aiming to overcome this subjectiveness to more precisely stimulate the activity center this work investigates the use of a co-register method based on TMS and fMRI through the use of a neuronavigator that allows the location of brain structures below a certain scalp position. Initially the TMS was characterized and a map of the magnetic field intensity produced by the eight shaped or butterfly coils was determined by different methods. After this step a neuronavigator was devel-oped allowing a superposition of the magnetic field pattern with the fMRI images. The coil position can be varied and the possible stimulated regions can be visualized. This integration of information is expected to improve the TMS accuracy. To verify the efficacy of this method the motor cortex of 10 asymptomatic volunteers were stimulated. The stimulus was monitored with an electromyogram acquired in the hand thumb abductor muscle. The results shown that with the neuronavigation it was possible to stimulate the desired motor region in all the volunteers studied.
3

Neuronavigation in brain tumor surgery:clinical beta-phase of the Oulu Neuronavigator System

Schiffbauer, H. (Hagen) 22 January 1999 (has links)
Abstract Interactive image-guided neurosurgery for the resection of brain tumors was developed within the last 10 years at different neurosurgical centers around the world to improve the safety of the surgery and the functional outcome of the patients. Since 1987, the Oulu Neuronavigator System, consisting mainly of a mechanical arm, visualization software, an ultrasound transducer and a computer, was developed at the Neurosurgical Research Unit, University of Oulu, Finland. It was the first system to incorporate the principle of the common surgical axis for visualization, including intraoperative ultrasonography. A precommercial version of the device was jointly developed with Elekta Ab, Stockholm, Sweden, as a public project under EUREKA and introduced into a clinical beta-phase trial in 1994 as the Leksell Index System™. A total of 19 operations were performed at the Oulu University Hospital between September 1994 and September 1996 for patients harboring different kinds of intracranial tumors, especially cerebral gliomas. This thesis gives a comprehensive review of the literature from the roots of stereotaxy to the latest developments in interactive image-guided neurosurgery and discusses the advantages and disadvantages of the Leksell Index System™ with special reference to the clinical series that was performed at our institution. Future therapy strategies for the treatment of patients with cerebral gliomas, especially glioblastoma multiforme are envisioned, focusing on the further improvement of surgical interventions. The clinical trial proved that the employed neuronavigator system is versatile and safe and that there are no adverse effects, complications or surgical mortality due to the device. It enabled the surgeon to plan smaller sized and better centered skin incisions and craniotomies and to approach the target lesion with less dissection of intact brain tissue. Despite more radical removal of lesions the overall invasiveness of the operation was decreased in 63.2% of the cases, the duration of the procedure was decreased in 78.9%, and the surgeon's feeling of safety could be improved in 89.5% of the operations. Due to the use of intraoperative imaging (with ultrasound) the experience provides a unique basis for next generation neuronavigators and also for interventional MRI.
4

Auswertung der Schraubenposition nach navigierter, O-Arm-kontrollierter spinaler Instrumentierung / Evaluation of pedicle screw insertion accuracy using O-arm navigation

Conrads, Nora January 2020 (has links) (PDF)
In dieser Studie wurden retrospektiv zwischen Juni 2010 und Juni 2015 die Schrauben bezüglich ihrer Lage und Länge nach navigierter, O-Arm kontrollierter dorsaler Stabilisierung der Wirbelsäule untersucht. In diesem Zeitraum wurden in der Neurochirurgie des Universitätsklinikums Würzburg 2666 Schrauben bei 433 Patienten in 413 Operationen platziert, wobei 2618 Schrauben in dieser Studie ausgewertet werden konnten. Gründe für eine operative Stabilisierung der Wirbelsäule waren im Gesamtkollektiv mit 58,43% am häufigsten degenerative Veränderungen gefolgt von Traumata mit 21,94%, Tumorerkrankungen mit 11,78% und entzündlichen Veränderungen mit 7,85%. Im Bereich der HWS waren die häufigsten Operationsindikationen traumatische Verletzungen mit 46,06%, auf Höhe der BWS Tumordiagnosen mit 46,77% und im Bereich der LWS degenerative Veränderungen mit 76,82%. Die Schrauben wurden auf Höhe der BWS und LWS bezüglich ihrer Lage nach der etablierten Einteilung von Zdichavsky et al. klassifiziert. Die Grundlage dieser Klassifikation ist die Relation der Pedikelschraube zum Pedikel und die Relation der Pedikelschraube zum Wirbelkörper, wobei eine korrekte 1a-Lage vorliegt, wenn mindestens die Hälfte des Pedikelschraubendurchmessers innerhalb des Pedikels und mindestens die Hälfte des Pedikelschraubendurchmessers innerhalb des Wirbelkörpers liegt. Im Bereich der BWS lagen bereits nach dem ersten intraoperativen Scan 89,72% der Schrauben in einer 1a-Lage, nach intraoperativer Revision von 41 Schrauben sogar 93,03% der Schrauben. Auf Höhe der LWS lagen nach dem 1. intraoperativen Scan 94,88% in einer 1a-Lage, nach intraoperativer Revision von 37 Schrauben konnte der Anteil an 1a-Lagen auf 96,14% erhöht werden. In Anlehnung an die Klassifikation von Zdichavsky et al. entstand eine neue Klassifikation für die HWS mit der Überlegung, dass die Stabilität und die Gefahr für neurologische und vaskuläre Komplikationen durch die Lage der Schrauben im Knochen definiert werden kann. Auch hier liegt eine korrekte 1a-Lage vor, wenn mindestens die Hälfte des Schraubendurchmessers innerhalb des Pedikels bzw. der Massa lateralis verläuft. Nach dem ersten intraoperativen Scan lagen bereits 93,93% der Schrauben in einer 1a-Lage, nach intraoperativer Revision von 32 Schrauben lagen sogar 96,20% der Schrauben in einer 1a-Lage. Die Bewertung der Schraublänge erfolgte relativ zur Länge des Schraubeneintrittspunkts und der Vorderkante des Wirbelkörpers, wobei alle Schraubenlängen zwischen 85% und 100% als „gut“ eingestuft wurden. Im Bereich der HWS hatten demnach zu Operationsende 65,62% der Schrauben eine gute Lange, in der BWS 69,72% und in der LWS 71,92%. Aufgrund einer primären Fehllage mussten lediglich 2 Schrauben (0,08% aller Schrauben) bei einem Patienten in einer Folgeoperation revidiert werden, wobei diese Fehllage retrospektiv auch in der initialen intraoperativen Bildgebung hätte erkannt werden können. Weitere Parameter wie Operationsdauer und Operationsart, Anzahl an intraoperativer Bildgebung sowie Anzahl der verschraubten Wirbelsegmente oder intraoperative Komplikationen wurden untersucht. In der klinischen Verlaufskontrolle zeigte sich außerdem eine signifikante Verbesserung der Schmerzen, nämlich in jeder Kategorie (Bein-, Arm-, Rücken-, Nackenschmerzen) gaben mindestens 75% der nachkontrollierten Patienten eine Komplettremission oder relevante Verbesserung der Symptome an. Auch in der neurologischen Verlaufskontrolle zeigte sich bei 68,86% der Patienten in der Nachkontrolle eine Komplettremission bzw. signifikante Verbesserung der neurologischen Beschwerden. In der postoperativen radiologischen Abschlussuntersuchung zeigten sich lediglich bei 3,07% der Schrauben Auffälligkeiten in Form von Schraubenlockerung (2,40%), Schraubendislokation (0,49%) oder Schraubenbrüchen (0,19%). / In this study we retrospectively analyzed the placement and length of pedicle screws after O-arm guided dorsal stabilisation at Wuerzburg Medical University Hospital between June 2010 and June 2015. Within this timeframe a total amount of 2666 pedicle screws were placed treating 433 patients who underwent 413 surgical procedures at the Department of Neurosurgery. For the whole collective our surgical indications included in descending order degenerative spine disorders (58,43 %), trauma (21,94%), spinal malignancy (11,78%) and spinal infection (7,85%). The prevalence of indications varied by region, for the cervical spine the most common indication was trauma (46,06%), whereas for the thoracic spine malignancy (46,77%) was the most common indication, followed by degenerative spine disorders (76,82%) as the main indication for surgery in the lumbar spine. The accuracy of pedicle screw placement in the lumbar and thoracic spine was classified by the established classification system by Zdichavsky et al.. Basis for this classification system is the screw's positioning in relation to the pedicle and in relation to the vertebral body. A perfect 1a positioning is achieved if the screw is placed with a minimum of 50% of its diameter within the pedicle and also with a minimum of 50% of its diameter in the vertebral body. In the thoracic spine 89,72% of the screws had a 1a positioning in the initial intraoperative scan, after intraoperative repositioning of 41 screws this number even climbed to 93,03%. In the lumbar spine region 94,88% of the screws showed a perfect 1a positioning in the initial intraoperative scan, 37 screws were repositioned so that the share of 1a positions even rised to 96,14%. Following the classification of Zdichavsky et al. a new classification system for the cervical spine has been developed bearing in mind that the stability and the risk of neurological and vascular complications could be defined by the positioning of screws within in the bone. Also in the cervical spine, a perfect 1a positioning is achieved by placing a minimum of 50% of the screw diameter within the pedicle or the lateral mass. In the initial intraoperative scan 93,93% of the screws had been placed perfectly in a 1a position, after intraoperative repositioning of 32 screws a total share of 96,20% achieved the criteria for a 1a position. The screw length was evaluated in relation to the length between the screw's entry point and the anterior vertebral body wall, whereby all screw lengths between 85% and 100% were considered "good". A "good" position at the end of the surgery could be achieved in 65,62 % in the cervical spine, in 69,72% in the thoracic spine and in 71,92% in the lumbar spine. Due to an initial misplacement only 2 screws had to be revised (0,08% of all screws) in an additional surgical procedure for one patient, albeit this misplacement retrospectively could have been discovered in the initial intraoperative scan. Additional parameters like duration of the surgical procedure, type of procedure, number of intraoperative scans, number of fused spine segments or intraoperative complications have been evaluated. Assessing the clinical outcome the results showed a significant improvement of pain levels. In every category (leg, arm, back and neck pain) a minimum of 75% of the evaluated patients showed a complete remission or a relevant alleviation of symptoms. Also in the neurological follow-up 68,86 % of patients showed a complete remission or a relevant improvement of neurological symptoms. In the postoperative radiological scan only 3,07% showed noticeable findings like screw loosening (2,40%), screw dislocation (0,49%) or broken screws (0,19%).
5

Surgical Management of Single and Multiple Brain Metastases: Results of a Retrospective Study

Schackert, Gabriele, Steinmetz, A., Meier, U., Sobottka, Stephan B. 26 February 2014 (has links) (PDF)
Background: Advancement in diagnosis and treatment of various cancer entities led to an increasing incidence of brain metastases in the last decades. Surgical excision of single and multiple brain metastases is one of the central treatment options beside radiotherapy, radiosurgery and chemotherapy. To evaluate the benefit of surgery with/without whole-brain radiation therapy (WBRT) in single brain metastases and the influence of image guidance for brain metastases resection, 104 patients were retrospectively evaluated for post-operative outcome. Patients and Methods: Between January 1994 and December 1999 150 patients were surgically treated for brain metastases at the Department of Neurosurgery at the Technical University of Dresden. Outcome could be evaluated in 104 patients with respect to special treatment strategies and survival time (69 patients with single and 35 patients with multiple lesions). Results: Most metastases originated from primary lung and breast tumours. Karnofsky performance score improved on average by 10 after surgery. The extent of the extracerebral tumour burden was the main influence on survival time. Patients’ age below 70 years was combined with prolonged survival time (median survival time, MST: 4.5 months vs. 7 months). Patients with solitary cerebral metastasis had a MST of 16 months, whereas patients with singular lesions had a MST of 7 and 4 months, depending on the extent of the extracerebral tumour growth. Additional post-operative WBRT with 30 Gy was combined with an increase in MST in patients with single brain metastasis (surgery + WBRT: MST 13 months; surgery only: MST 8 months). In addition, the rate of recurrent cerebral tumour growth was distinctly higher in the non-WBRT group. Neuronavigation did not significantly improve post-operative survival time. In 80% of patients extracerebral tumour growth limited patients’ survival. Conclusion: Surgery is an initial treatment option in patients with single and multiple brain metastases especially with large tumours (> 3 cm). Post-operative WBRT seems to prolong survival time in patients with single brain metastasis by decreasing local and distant tumour recurrence. Neuronavigational devices permit a targeted approach. Multiple processes can be extirpated in one session without prolonging the hospitalisation time for the patient. However, neuronavigational devices cannot assure complete tumour resection. / Hintergrund: Fortschritte in der Diagnostik und Therapie von Krebserkrankungen haben in den letzten Jahrzehnten zu einer steigenden Inzidenz von Hirnmetastasen geführt. Die chirurgische Entfernung singulärer und multipler Hirnmetastasen stellt neben Strahlentherapie, Radiochirurgie und Chemotherapie eine zentrale Therapieoption dar. Um die Wertigkeit der chirurgischen Behandlung von singulären Hirnmetastasen mit/ohne Ganzhirnbestrahlung (WBRT) und den Einfluss der Neuronavigation zu untersuchen, wurden 104 Patienten retrospektiv bezüglich ihres postoperativen «Outcomes» untersucht. Patienten und Methoden: Zwischen Januar 1994 und Dezember 1999 wurden 150 Patienten mit Hirnmetastasen in der Klinik für Neurochirurgie der Technischen Universität Dresden operiert. Das «Outcome » von 104 Patienten konnte bezüglich der verschiedenen Behandlungsstrategien und Überlebenszeit ausgewertet werden (69 Patienten mit singulären und 35 Patienten mit multiplen Läsionen). Ergebnisse: Die meisten Metastasen stammen von Lungen- und Mammakarzinomen. Nach operativer Behandlung verbesserte sich der Karnofsky-Index um durchschnittlich 10. Das Ausmaß der extrazerebralen Tumormasse stellte die Haupteinflussgröße für die Überlebenszeit dar. Ein Lebensalter unter 70 Jahren war mit einer verlängerten Überlebenszeit verbunden (mittlere Überlebenszeit, MÜZ: 4,5 Monate vs. 7 Monate). Patienten mit solitären Metastasen hatten eine MÜZ von 16 Monaten, während Patienten mit singulären Läsionen, abhängig vom Ausmaß des extrazerebralen Tumorwachstums, eine MÜZ von 7 bzw. 4 Monaten aufweisen. Eine zusätzliche postoperative WBRT mit 30 Gy zeigte eine Verbesserung der MÜZ bei Patienten mit singulären Hirnmetastasen (OP + WBRT: MÜZ 13 Monate; OP allein: MÜZ 8 Monate). Gleichzeitig war die Rate der zerebralen Tumorrezidive in der Nicht-WBRT Gruppe deutlich höher. Die postoperative Überlebenszeit wurde durch Verwendung der Neuronavigation nicht signifikant verbessert. In 80% der Patienten limitierte das extrazerebrale Tumorwachstum die Überlebenszeit. Fazit: Bei Patienten mit singulären und multiplen Metastasen stellt die initiale chirurgische Tumorentfernung eine Therapiealternative insbesondere bei großen Tumoren (> 3 cm) dar. Eine postoperative WBRT scheint die ÜLZ der Patienten mit singulären Hirnmetastasen durch Begrenzung des Auftretens von Rezidivtumoren zu verlängern. Die Neuronavigation erlaubt eine gezielte Zugangsplanung. Multiple Prozesse können einzeitig operiert werden, ohne dass die postoperative stationäre Verweildauer verlängert wird. Hingegen wird eine radikale Tumorentfernung durch Verwendung der Neuronavigation nicht gewährleistet. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
6

Phantom para treinamento de neuronavegação guiada por imagens de ultra-som e de ressonância magnética / Training Phantom For Neuronavigation Guided By Ultrasound and Magnetic Ressonance Imaging.

Lemos, Tenysson Will de 11 September 2008 (has links)
Este trabalho teve como objetivo o desenvolvimento de um phantom de cabeça, com características acústicas e magnéticas equivalentes à do cérebro humano, para a formação de imagens, tanto por ultrasom quanto em ressonância magnética, para uso de treinamento clínico em neuronavegação. Geralmente, nos procedimentos de neurocirurgia, são usadas ambas as modalidades de imagens, sendo a ressonância comumente usada durante o processo préoperatório e, o ultrasom usado durante o procedimento cirúrgico, a fim de localizar a lesão e guiar o ato cirúrgico. Para tanto, o material que mimetiza o tecido cerebral foi desenvolvido a base de gelatina animal e vegetal. Pó de vidro e outras substâncias químicas foram adicionados à gelatina de modo que a atenuação acústica, espalhamento da onda e velocidade acústica ficassem equivalentes ao observado no tecido humano. Para mimetizar o sinal de ressonância magnética, material paramagnético foi adicionado à gelatina de modo que os valores dos tempos de relaxação transversal (T2) e longitudinal (T1) ficassem equivalentes aos observados nos tecidos do cérebro humano. Testes de neuronavegação foram realizados com um sistema desenvolvido no próprio laboratório. Para simular um processo cirúrgico, uma janela de acesso ao tecido cerebral foi criada no lado esquerdo da cabeça. As propriedades acústicas e magnéticas do tecido mimetizador proporcionaram contraste nas imagens de ultrasom e ressonância magnética equivalentes aos observados no tecido do cérebro humano. A morfologia e o tamanho do phantom são equivalentes ao de um cérebro de uma criança de aproximadamente cinco anos. Para avaliar o potencial do phantom como uma ferramenta para treinamento de um processo précirúrgico, foi realizada o préprocessamento e reconstrução 3D do phantom a partir das imagens de ressonância magnética, utilizando um software comercial Brainvoyeger® . / The goal of this work was to make a head phantom that can be used either in Ultrasonography (US) or Magnetic Resonance Imaging (MRI) to be applied as guided training for head surgery in a neuronavigation system. Generally, for neurosurgery procedures, both images modality (US and MRI) are used as guide. MRI images are used for previous evaluation of surgery, for localization of the tumor, choice of window on the head for craniotomy and path into the brain to access the tumor. The ultrasonography of the brain is used during the surgery procedure to guide and control the removal of the tumor. The phantom was developed with mimickingtissue material to generate contrast and intensity in the MRI and US image equivalent to that one obtained in human brain. The base material was made of pork gelatin (Bloom 250). The acoustic properties of this material (velocity, attenuation and Speckle) were controlled adding formaldehyde and glass bids. The magnetic properties (T1 and T2 relaxation) were controlled by adding sodiumEDTA and cupric chloride (CuCl2). The morphology and size of the brain were modeled into a head shell of rubber with size and geometry equivalent to a head of a child of approximately 5 years old. The evaluation of the phantom as tools for neuronavigation training was done simulating a surgery procedure. First, a volume of MRI image of the phantom was acquired using a tomography of 1.5 T (Siemens Vision®). After, using a 3D special sensor coupled to micro convex ultrasound transducer, the ultrasound and MRI image, of a same region, was showed simultaneously using a navigator software developed in the own lab by another student. For this evaluation, a craniotomy was done in the right side of the phantom. The 3D reconstruction of the phantom from MRI images volume was evaluated using commercial software Brainvoyeger®. The size, morphology of the head and the US and MRI image quality 12 of the simulated brain were very close to those ones observed in the brain of a young person. This product is very useful as a tool for training neurosurgeons and for calibration of neuronavegator system.
7

Desenvolvimento de protocolos de neuronavegação para estudos de estimulação magnética transcraniana e suas aplicações em voluntários controle e pacientes com acidente vascular cerebral / Development of protocols for Transcranial Magnetic Stimulation Neuronavigated studies and Its Applications in Control and Patients with Stroke subjects

Peres, André Salles Cunha 05 October 2012 (has links)
Objetivos A estimulação magnética transcraniana (TMS, do inglês: Transcranial Magnetic Stimulation) e as imagens funcionais por ressonância magnética (fMRI, do inglês: functinal Magnetic Resonance Imaging) são duas técnicas não invasivas de investigação de atividade do sistema nervoso central. Porém essas duas técnicas utilizam estratégias diferentes para mensurar a atividade cerebral, sendo que a TMS avalia a resposta elétrica enquanto que a fMRI a resposta hemodinâmica. Nosso intuito nesse trabalho foi criar ferramentas para a comparação dessas duas técnicas no mapeamento do córtex motor, bem como utilizando as ferramentas desenvolvidas, fazer uma comparação dos mapas motores de pacientes com AVC com sujeitos assintomáticos, e nesses dois grupos, também realizar uma avaliação nos efeitos no córtex motor da eletroestimulação sensorial (SES, do inglês: Sensory Electric Stimulation) pelas técnicas de TMS e fMRI. Métodos Paro o mapeamento vetorial do campo magnético produzido pela bobina de TMS utilizamos fantomas que simulavam o tecido cerebral e realizamos medidas de imagens de ressonância magnética (MRI, do inglês: Magnetic Resonance Imaging) de fase em três direções para a construção do mapa vetorial. Uma vez dominada a técnica de mapeamento por imagens de fase, a utilizamos para auxiliar na construção de bobinas para estimulação periférica e pequenos animais. Para realização do mapeamento do córtex motor com TMS desenvolvemos um sistema de neuronavegação (Neuronavegador InVesalius) e um programa para análise dos sinais de eletromiografia (MEPHunter), bem como um segundo programa para fazer o corregistro dos mapas de produzidos pela TMS com os mapas de fMRI (TMSProjection). Em posse dessas ferramentas, pudemos realizar o mapeamento do córtex motor de pacientes com AVCi crônicos. Para tanto estimulamos uma área quadrada de 25cm2 do escalpo sobre o córtex motor e coletamos o potencial evocado nos músculos abdutor curto do polegar ipsi e contralateral à TMS, e nos músculos flexor e extensor radial do carpo, contralaterais à TMS. Para a realização das fMRIs realizamos um paradigma evento-relacionada com um protocolo de abrir e fechar a mão. Por fim avaliamos os efeitos da SES à 3Hz com um única sessão de 30 minutos, realizando medidas de potencial evocado e fMRI imediatamente antes e imediatamente após à SES. Resultados O sistema de neuronavegação juntamente com o conjunto de programas computacionais possibilitou a realização dos estudos clínicos. Nossos dados mostraram uma correlação maior entre os mapas de MEP e os mapas de fMRI nos sujeitos normais do que nos pacientes com AVC, principalmente no hemisfério afetado. Nossos resultados também sugerem que a SES pode provocar modulação na excitabilidade cortical, causando redução da excitabilidade cortical das regiões motoras, quando aplicados na frequência e duração utilizadas nesse estudo. Conclusão O mapeamento de campo magnético por MRI é uma boa alternativa para medir campos complexos e pode ser utilizado no desenvolvimento de novas bobinas de estimulação magética. O neuronavegador Invesalius, o MEPHunter e o TMSProjection são ferramentas poderosas para estudos em neuroimagens podendo ser ampliado seu uso para outras áreas como neurologia e fisioterapia. Quanto aos estudos clínicos acreditamos que o fator que mais colabora para a pior correlação dos mapas dos pacientes é a redução de fibras corticoespinhais e a plasticidade, e que a SES aplicada a 3Hz em uma única sessão tem um efeito agudo de redução da excitabilidade do córtex motor. / Background and Purpose - Transcranial magnetic stimulation (TMS) and functional magnetic resonance images (fMRI) are two noninvasive techniques to investigate the central nervous system activity. These two techniques use different strategies to measure brain activity, once the TMS evaluates the electrical response while the fMRI studies hemodynamic response. Our purpose in this study was to create tools for the comparison of these two techniques for mapping the motor cortex. Latter, using these tools, we compared the motor maps of stroke patients and healthy subjects. Furthermore, we evaluated the effects of electrical stimulation in the sensory motor cortex (SES) by TMS and fMRI techniques. Methods - In order to map the magnetic field vector produced by the TMS coil, we used phantoms that simulated brain tissue and performed measurements of magnetic resonance phase images in three directions, in this way, composing the vector map. Then, we used this technique for helping to build small coils for peripheral and small animals stimulation. For the TMS mapping, we developed a neuronavigation system (InVesalius neuronavigator) and a program to analyze the electromyogram responses (MEPHunter). Secondly, a program to co-register the TMS and fMRI maps (TMSProjection) was created. Using these tools, we mapped the motor cortex of the chronic ischemic stroke patients. For this, we stimulated a square scalp area of 25cm2 over the motor cortex and collected the motor evoked potential (MEP) in the abductor pollicis brevis, ipsilateral and contralateral to TMS, and the flexor and extensor carpi radialis, contralateral to TMS. FMRI was also acquired using an event-related paradigm where the volunteers were asked to open and close their hand. Finally, we evaluated the effects of 3Hz SES in a single 30-minute session, performing measurements of TMS and fMRI before and immediately after the SES. Results - The neuronavigation system and the developed softwares made possible clinical studies. We also found a higher correlation between the MEP and fMRI maps in normal subjects than in stroke patients, especially in the affected hemisphere. Additionally, Our results suggested that SES may cause reduction in cortical excitability of motor regions, when applied with the frequency and duration used in this study. Conclusion - The magnetic field MRI mapping is an efficient alternative for complex fields measuring and can be utilized in the development of new TMS coils geometry. The neuronavigator InVesalius, MEPHunter and TMSProjection are powerful tools for neuroimaging studies and other areas as neurology and physiotherapy. We believe that the most important factor that contributes to the correlation decrease between the MEP and fMRI maps of the patients is the reduction of functional corticospinal fibers and the plasticity of motor areas. In this sense, the 3 Hz SES showed to be a potential technique as therapy in spastic patients.
8

Desenvolvimento de funcionalidades no InVesalius Navigator e comparação de neuroimagem estrutural com o cérebro padrão MNI para EMTn / Development of functionalities for InVesalius Navigator and comparison of structural neuroimaging with standard MNI brain for EMTn

Matsuda, Renan Hiroshi 07 March 2018 (has links)
A Neuronavegação é uma técnica de visualização computacional da localização de instrumentos em relação às estruturas neuronais. A estimulação magnética transcraniana (EMT) é uma ferramenta para estimulação cerebral não-invasiva, que tem sido utilizada em aplicações clínicas, para o tratamento de algumas patologias, e também em pesquisas. Entretanto, a EMT é uma técnica altamente dependente de parâmetros como o posicionamento e orientação da bobina de estimulação em relação às estruturas neuronais. Para auxiliar no posicionamento da bobina, uma combinação entre neuronavegação e EMT é utilizada, chamada de EMTnavegada (EMTn). Essa técnica permite o monitoramento em tempo real da bobina de EMT em relação às neuroimagens. Porém, a utilização da EMTn ainda é pouco explorada, tanto na pesquisa quanto no ambiente clínico, devido ao alto custo, exigência da imagem de ressonância magnética, complexidade e baixa portabilidade dos sistemas de EMTn comerciais. O neuronavegador de código aberto e livre, InVesalius Navigator, vem sendo desenvolvido para ajudar a suprir essa necessidade. Assim, o objetivo desta dissertação foi desenvolver ferramentas para o sistema de neuronavegação InVesalius Navigator. As funcionalidades adicionadas foram: i) suporte para três tipos de rastreadores espaciais; ii) sincronização da EMT com o neuronavegador; iii) guia para o reposicionamento da bobina. Além disso, com intuito de contornar a necessidade de utilizar a imagem de ressonância magnética foram realizados estudos para a substituição por uma imagem padrão. Na parte de desenvolvimento, experimentos de caracterização foram realizados para validação das ferramentas. O sistema de neuronavegação apresentou-se intuitivo e de fácil portabilidade. Além disso, a precisão obtida foi semelhante à de sistemas comerciais. Os erros de localização foram inferiores a 3 mm, considerados aceitáveis para aplicações clínicas. Na segunda parte, procedimentos que não exigem extrema precisão, como a localização e digitalização do hotspot, a variabilidade foi considerada aceitável. Portanto, a utilização da imagem média mostrou-se uma possível alternativa para as imagens de ressonância magnética. / Neuronavigation is a computer image-guided technique to locate surgical instruments related to brain structures. The transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method, it has been used for clinical purposes, treating neurological disorders, and also for research purpose, studying cortical brain function. However, the use of TMS is highly dependent on coil position and orientation related to brain structures. The navigated TMS (nTMS) is a combined technique of neuronavigation system and TMS, this technique allows tracking TMS coil by image guidance. Yet, nTMS is not widely used, either in research and in the clinical environment, due to the high cost, magnetic resonance imaging requirement, complexity, and low portability of commercial TMS systems. Thus, the aim of this dissertation was to develop tools for the neuronavigator system InVesalius Navigator, such as: i) support for three types of spatial trackers; ii) synchronization of the TMS with the neuronavigator; iii) guide for coil repositioning. In addition, in order to overcome the magnetic resonance imaging requirement, studies were made to replace it with a standard brain image. In the development part, characterization experiments were done to validate the new functionalities. Therefore, the accuracy obtained was similar to commercial systems. Localization errors were less than 3 mm considered acceptable for clinical applications. In the second part, for procedures that do not require extreme accuracy, such as the location and scanning of the hotspot, the variability was considered acceptable. Therefore, the use of the standard brain image was a possible alternative for magnetic resonance imaging.
9

ADVANCED NEW NEUROSURGICAL PROCEDURE USING INTEGRATED SYSTEM OF INTRAOPERATIVE MRI AND NEURONAVIGATION WITH MULTIMODAL NEURORADIOLOGICAL IMAGES

WAKABAYASHI, TOSHIHIKO, FUJII, MASAZUMI, KAJITA, YASUKAZU, NATSUME, ATSUSHI, MAEZAWA, SATOSHI, YOSHIDA, JUN 09 1900 (has links)
No description available.
10

Desenvolvimento de funcionalidades no InVesalius Navigator e comparação de neuroimagem estrutural com o cérebro padrão MNI para EMTn / Development of functionalities for InVesalius Navigator and comparison of structural neuroimaging with standard MNI brain for EMTn

Renan Hiroshi Matsuda 07 March 2018 (has links)
A Neuronavegação é uma técnica de visualização computacional da localização de instrumentos em relação às estruturas neuronais. A estimulação magnética transcraniana (EMT) é uma ferramenta para estimulação cerebral não-invasiva, que tem sido utilizada em aplicações clínicas, para o tratamento de algumas patologias, e também em pesquisas. Entretanto, a EMT é uma técnica altamente dependente de parâmetros como o posicionamento e orientação da bobina de estimulação em relação às estruturas neuronais. Para auxiliar no posicionamento da bobina, uma combinação entre neuronavegação e EMT é utilizada, chamada de EMTnavegada (EMTn). Essa técnica permite o monitoramento em tempo real da bobina de EMT em relação às neuroimagens. Porém, a utilização da EMTn ainda é pouco explorada, tanto na pesquisa quanto no ambiente clínico, devido ao alto custo, exigência da imagem de ressonância magnética, complexidade e baixa portabilidade dos sistemas de EMTn comerciais. O neuronavegador de código aberto e livre, InVesalius Navigator, vem sendo desenvolvido para ajudar a suprir essa necessidade. Assim, o objetivo desta dissertação foi desenvolver ferramentas para o sistema de neuronavegação InVesalius Navigator. As funcionalidades adicionadas foram: i) suporte para três tipos de rastreadores espaciais; ii) sincronização da EMT com o neuronavegador; iii) guia para o reposicionamento da bobina. Além disso, com intuito de contornar a necessidade de utilizar a imagem de ressonância magnética foram realizados estudos para a substituição por uma imagem padrão. Na parte de desenvolvimento, experimentos de caracterização foram realizados para validação das ferramentas. O sistema de neuronavegação apresentou-se intuitivo e de fácil portabilidade. Além disso, a precisão obtida foi semelhante à de sistemas comerciais. Os erros de localização foram inferiores a 3 mm, considerados aceitáveis para aplicações clínicas. Na segunda parte, procedimentos que não exigem extrema precisão, como a localização e digitalização do hotspot, a variabilidade foi considerada aceitável. Portanto, a utilização da imagem média mostrou-se uma possível alternativa para as imagens de ressonância magnética. / Neuronavigation is a computer image-guided technique to locate surgical instruments related to brain structures. The transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method, it has been used for clinical purposes, treating neurological disorders, and also for research purpose, studying cortical brain function. However, the use of TMS is highly dependent on coil position and orientation related to brain structures. The navigated TMS (nTMS) is a combined technique of neuronavigation system and TMS, this technique allows tracking TMS coil by image guidance. Yet, nTMS is not widely used, either in research and in the clinical environment, due to the high cost, magnetic resonance imaging requirement, complexity, and low portability of commercial TMS systems. Thus, the aim of this dissertation was to develop tools for the neuronavigator system InVesalius Navigator, such as: i) support for three types of spatial trackers; ii) synchronization of the TMS with the neuronavigator; iii) guide for coil repositioning. In addition, in order to overcome the magnetic resonance imaging requirement, studies were made to replace it with a standard brain image. In the development part, characterization experiments were done to validate the new functionalities. Therefore, the accuracy obtained was similar to commercial systems. Localization errors were less than 3 mm considered acceptable for clinical applications. In the second part, for procedures that do not require extreme accuracy, such as the location and scanning of the hotspot, the variability was considered acceptable. Therefore, the use of the standard brain image was a possible alternative for magnetic resonance imaging.

Page generated in 0.1504 seconds