Spelling suggestions: "subject:"neuroprothèses"" "subject:"neuroprothèse""
1 |
Développement de nouvelles matrices de micro-électrodes pour l’analyse et la compréhension du système nerveux central / Development of new Micro Electrode Array to understand dynamics of large neural networkRousseau, Lionel 13 January 2010 (has links)
La compréhension et l'étude du système nerveux est un des grands enjeux du XXIème siècle à la fois pour la recherche fondamentale, mais également pour la mise au point de neuroprothèses implantables pour la réhabilitation fonctionnelle (exemple : implants rétiniens, implants cochléaires). Depuis quelques années, des systèmes basés sur l'utilisation de multi-électrodes (MEA : Multi-Electrode-Array) offrent la possibilité d'enregistrer des milliers de cellules interconnectées entre-elles sur plusieurs jours sur des tranches de tissu nerveux ou des systèmes nerveux complets. Mais une des limites de cette technique est le faible nombre de voies de ces systèmes (64 voies). Les travaux de cette thèse ont consisté à développer une technologie de fabrication permettant la réalisation d'un système multiélectrode s « haute densité 3D ». Cela passe par le développement d'une nouvelle technologie dans la réalisation de micro pointes basée sur la gravure profonde du silicium (DRIE), qui permet d'obtenir des pointes en silicium de 80 µm de haut espacées de 50 µm. Des matrices 60, 256 et 1024 voies ont été fabriquées par cette technique. L'utilisation de la stimulation est aussi un point important dans l'étude de ces grands réseaux, mais il n'est pas possible actuellement de disposer de système permettant une stimulation focale. Pour résoudre ce problème, nous avons développé des matrices spécifiques permettant d'obtenir des stimulations focales du tissu. Nous avons également dans ces travaux de thèse étudié le comportement de l'interface métal/liquide, qui est cruciale pour la réalisation de MEA, en utilisant des techniques d'électrochimie / One challenge of the XXIème century will be to understand dynamics of large neural networks for research and to develop neuroprothesis implant (ex retinal implant, cochlear implant). Today microelectrodes arrays (MEAs) positioned in contact with the neural tissue offer the opportunity to record and simulate neuronal tissue. But the main drawback of his technique is low number of recording sites (typically 64). During this thesis, we have developed a specific process using deep reactive ions etching (DRIE), to achieve high density 3D MEAs containing several hundreds of microelectrodes. We have fabricated microneedles 80 µm of height with spacing of 50 µm and MEAs with 60 – 256 and 1024 microelectrodes have been built with this process. Microstimulation, which makes use of electrodes on the micron scale, is gaining increasing interest in both fundamental and clinical research, opening the possibility to stimulate small groups of neurons instead of large regions. However, controlling the spatial extent of microstimulation to achieve focal activation of neuron networks is a challenge. We have proposed a new configuration of MEA specifically designed to achieve a local stimulation. We have also characterised the interface metal/liquid, that was very important for MEA and we have used electrochemistry techniques
|
2 |
Naviguer en vision prothétique simulée : apport de la vision par ordinateur pour augmenter les rendus prothétiques de basse résolution / Navigation in simulated prosthetic vision : augmenting low resolution prosthetic renderings with computer visionVergnieux, Victor 02 December 2015 (has links)
La cécité touche 39 millions de personnes dans le monde et génère de nombreuses difficultés dans la vie quotidienne. Plus précisément, les capacités de navigation (incluant orientation et mobilité) sont fortement diminuées, ce qui amène les personnes non-voyantes à limiter, voire à cesser leurs déplacements. Pour restaurer des sensations "visuelles", et par-delà, une certaine autonomie, il est possible de stimuler directement le système visuel résiduel d'une personne non-voyante à l'aide d'un implant administrant des micro-stimulations électriques. Le dispositif complet se compose d'une micro-caméra portée sur des lunettes et reliée à un ordinateur de poche, qui lui-même est connecté à l'implant. Lors des micro-stimulations, les sujets perçoivent des tâches grises, blanches ou jaunâtres appelées phosphènes. Ainsi la qualité de la vision restaurée est directement dépendante de la résolution et de la position de l'implant. Le nombre d'électrodes étant faible pour les implants en développement (moins d'une centaine), il est nécessaire de réduire drastiquement la résolution du flux vidéo pour la faire correspondre à la faible résolution de l'implant. Actuellement, l'Argus II de la société Second Sight est l'implant dont le développement est le plus avancé et sa résolution est de 60 électrodes, ce qui permet aux patients implantés de percevoir 60 phosphènes différents. Cette vision restaurée est donc très pauvre et un travail d'optimisation du signal est nécessaire pour pouvoir utiliser l'implant de manière fonctionnelle. Les sujets implantés sont impliqués dans des protocoles cliniques fermés ne permettant pas de les inclure dans d'autres expériences. Malgré cela, il est possible d'étudier les possibilités offertes par ces implants visuels en simulant la vision prothétique dans un casque de réalité virtuelle porté par des sujets voyants. Il s'agit du domaine de la vision prothétique simulée (VPS). La navigation n'a jamais été étudiée chez les patients implantés et très rarement en VPS. Il s'avère qu'avec des implants de très faible résolution, elle pose de grandes difficultés liées à la mobilité mais également des difficultés liées à l'orientation. Les travaux entrepris dans ce doctorat se concentrent sur l'étude de la navigation en VPS. Différentes théories en psychologie nous ont permis d'identifier les éléments importants pour les sujets afin qu'ils se repèrent et se construisent une représentation mentale fiable de l'environnement lors de la navigation. À partir de ces modèles, différents rendus prothétiques utilisant la vision par ordinateur ont été conçus et testés dans une tâche de navigation réalisée dans un environnement virtuel. Les expérimentations effectuées avaient pour objectif d'optimiser la perception et la compréhension de l'espace parcouru avec un implant de faible résolution. Ces évaluations reposaient sur la performance de temps des sujets pour effectuer la tâche de navigation et sur leur représentation mentale de l'environnement. Après la tâche de navigation, il leur était demandé de dessiner la carte des environnements explorés, afin d'évaluer ces représentations. Cette double évaluation a permis d'identifier les indices importants permettant de faciliter la perception et la mémorisation de la structure des environnements dans une tâche de navigation en VPS. Pour améliorer les performances des personnes non-voyantes implantées, il apparaît notamment nécessaire de limiter la quantité d'information présentée, tout en préservant la structure de l'environnement grâce à des algorithmes de vision par ordinateur. Lorsque l'accès à des patients implantés sera plus ouvert, il deviendra nécessaire de valider ces différents résultats en les faisant naviguer en environnement virtuel puis en environnement réel. / Blindness affects thirty nine millions people in the world and generates numerous difficulties in everyday life. Specifically, navigation abilities (which include wayfinding and mobility) are heavily diminished. This leads blind people to limit and eventually to stop walking outside. Visual neuroprosthesis are developed in order to restore such "visual" perception and help them to get some autonomy back. Those implants generate electrical micro-stimulations which are focused on the retina, the optic nerve or the visual cortex. Those stimulations elicit blurry dots called "phosphenes". Phosphenes can be mainly white, grey or yellow. The whole stimulation device contains a wearable camera, a small computer and the implant which is connected to the computer. The implant resolution and position impact directly the quality of the restored visual perception. Current implants include less than a hundred electrodes so it is mandatory to reduce the resolution of the visual stream to match the implant resolution. For instance, the already commercialized Argus II implant from the company Second Sight (Seymar, California) is the leading visual implant worldwide and uses only sixty electrodes. This means that Argus II blind owners can perceive only sixty phosphenes simultaneously. Therefore this restored vision is quite poor and signal optimization is required to get to a functional implant usage. Blind people with implants are involved in restricted clinical trials and are difficult to reach. Yet, studying those implant possibilities is at our reach by simulating prosthetic vision and displaying it in a head mounted display for sighted subjects. This is the field of simulated prosthetic vision (SPV). Navigation was never studied with people with implant, and only a few studies approached this topic in SPV. In this thesis, we focused on the study of navigation in SPV. Computer vision allowed us to select which of the scene elements to display in order to help subjects to navigate and build a spatial representation of the environment. We used psychological models of navigation to conceive and evaluate SPV renderings. Subjects had to find their way and collect elements in a navigation task in SPV inspired by video games for the blind. To evaluate their performance we used a performance index based on the completion time. To evaluate their mental representation, we asked them to draw the environment layout after the task for each rendering. This double evaluation lead us to spot which elements can and should be displayed in low resolution SPV in order to navigate. Specifically those results show that to be understandable in low vision, a scene must be simple and the structure of the environment should not be hidden. When blind people with implant will become available we will be able to confirm or deny those results by evaluating their navigation in virtual and real environments.
|
3 |
Wireless power transfer for combined sensing and stimulation in implantable biomedical devicesMaghsoudloo, Esmaeel 30 January 2019 (has links)
Actuellement, il existe une forte demande de Headstage et de microsystèmes intégrés implantables pour étudier l’activité cérébrale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le système nerveux central dans les paradigmes électriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour découvrir de nouveaux médicaments et thérapies contre des troubles neurologiques comme l’épilepsie, la dépression et la maladie de Parkinson. Puisque les systèmes implantables ne peuvent pas utiliser une batterie ayant une grande capacité en tant que source d’énergie primaire dans des expériences à long terme, la consommation d’énergie du dispositif implantable est l’un des principaux défis de ces conceptions. La première partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de décalage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas à haute vitesse en utilisant une très faible puissance et une petite zone de silicium, ce qui le rend idéal pour les applications de faible puissance. Le circuit proposé introduit une nouvelle topologie de décaleur de niveau de tension utilisant un condensateur de décalage de niveau pour augmenter la plage de tensions de conversion, tout en réduisant considérablement le retard de conversion. Le circuit proposé atteint un délai de propagation plus court et une zone de silicium plus petite pour une fréquence de fonctionnement et une consommation d’énergie donnée par rapport à d’autres solutions de circuit. Les résultats de mesure sont présentés pour le circuit proposé fabriqué dans un processus CMOS TSMC de 0,18- mm. Le circuit présenté peut convertir une large gamme de tensions d’entrée de 330 mV à 1,8 V et fonctionner sur une plage de fréquence de 100 Hz à 100 MHz. Il a un délai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrée de 0,4 V, à une fréquence de 500 kHz, surpassant les conceptions précédentes. La deuxième partie de cette recherche comprend nos systèmes de transfert d’énergie sans fil proposé pour les applications optogénétiques. L’optogénétique est la combinaison de la méthode génétique et optique d’excitation, d’enregistrement et de contrôle des neurones biologiques. Ce système combine plusieurs technologies telles que les MEMS et la microélectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs électriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacité comme source d’énergie. / Notre première contribution dans la deuxième partie fournit un système de cage domestique intelligent basé sur des barrettes multi-bobines superposées à travers un récepteur multicellulaire implantable mince de taille 1×1 cm2, implanté sous le cuir chevelu d’une souris de laboratoire, et unité de gestion de l’alimentation intégrée. Ce système inductif est conçu pour fournir jusqu’à 35,5 mW de puissance délivrée à un émetteur-récepteur full duplex de faible puissance entièrement intégré pour prendre en charge des implants neuronaux à haute densité et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large à impulsions radio basée sur des approches de combinaison, et le récepteur (RX) utilise une topologie à bande étroite à incrémentation de 2,4 GHz. L’émetteur-récepteur proposé fournit un débit de données de liaison montante TX à 500 Mbits/s double et un débit de données de liaison descendante RX à 100 Mbits/s, et est entièrement intégré dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut être délivrée à partir d’un signal de porteuse de 13,56-MHz avec une efficacité globale de transfert de puissance supérieure à 5% sur une distance de séparation allant de 3 cm à 5 cm. Notre deuxième contribution dans les systèmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entièrement sans fil afin de permettre des expériences optogénétiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau réseau hybride de transmetteurs de puissance (TX) et des résonateurs multi-bobines segmentés pour atteindre une efficacité de transmission de puissance élevée (PTE) et délivrer une puissance élevée sur des distances aussi élevées que 20 cm. Le récepteur de puissance à bobines multiples (RX) utilise une bobine RX d’un diamètre de 1 cm et une bobine de résonateur d’un diamètre de 1,5 cm. L’efficacité moyenne du transfert de puissance WPT est de 29, 4%, à une distance nominale de 7 cm, pour une fréquence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut délivrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intégré dans un processus CMOS TSMC de 0,18-mm a été conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de température, émetteur-récepteur et unité de gestion de l’alimentation (PMU). Ce circuit est alimenté à l’intérieur de la cage du WPT à l’aide d’une bobine réceptrice d’un diamètre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions régulées de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le système sur une puce. Notre dernière contribution est un système WPT insensible aux désalignements angulaires pour alimenter un headstage pour des applications optogénétiques qui a été précédemment proposé par le Laboratoire de Microsystèmes Biomédicaux (BioML-UL) à ULAVAL. Ce système est la version étendue de notre deuxième contribution aux systèmes de collecte d’énergie.Dans la version mise à jour, un récepteur de puissance multi-bobines utilise une bobine RX d’un diamètre de 1,0 cm et une nouvelle bobine de résonateur fendu d’un diamètre de 1,5 cm, qui résiste aux défauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la dernière version, 4 résonateurs sont utilisés côté TX. De plus, grâce à la forme et à la position de la bobine de répéteur L3 du côté du récepteur, la liaison résonnante hybride présentée peut correctement alimenter la tête sans interruption causée par le désalignement angulaire dans toute la cage de la maison. Chaque 3 tours du répéteur RX a été enveloppé avec un diamètre de 1,5 cm, sous différents angles par rapport à la bobine réceptrice. Les résultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La méthode proposée peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogénétiques. De plus, dans cette version, la performance du système est démontrée dans une expérience in-vivo avec une souris ChR2 en mouvement libre qui est la première expérience optogénétique sans fil et sans batterie rapportée avec enregistrement électrophysiologique simultané et stimulation optogénétique. L’activité électrophysiologique a été enregistrée après une stimulation optogénétique dans le Cortex Cingulaire Antérieur (CAC) de la souris. / Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse. / Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source.
|
4 |
Développement de nouvelles matrices de micro-électrodes pour l'analyse et la compréhension du système nerveux centralRousseau, Lionel 13 January 2010 (has links) (PDF)
La compréhension et l'étude du système nerveux est un des grands enjeux du XXIème siècle à la fois pour la recherche fondamentale, mais également pour la mise au point de neuroprothèses implantables pour la réhabilitation fonctionnelle (exemple : implants rétiniens, implants cochléaires). Depuis quelques années, des systèmes basés sur l'utilisation de multi-électrodes (MEA : Multi-Electrode-Array) offrent la possibilité d'enregistrer des milliers de cellules interconnectées entre-elles sur plusieurs jours sur des tranches de tissu nerveux ou des systèmes nerveux complets. Mais une des limites de cette technique est le faible nombre de voies de ces systèmes (64 voies). Les travaux de cette thèse ont consisté à développer une technologie de fabrication permettant la réalisation d'un système multiélectrode s " haute densité 3D ". Cela passe par le développement d'une nouvelle technologie dans la réalisation de micro pointes basée sur la gravure profonde du silicium (DRIE), qui permet d'obtenir des pointes en silicium de 80 µm de haut espacées de 50 µm. Des matrices 60, 256 et 1024 voies ont été fabriquées par cette technique. L'utilisation de la stimulation est aussi un point important dans l'étude de ces grands réseaux, mais il n'est pas possible actuellement de disposer de système permettant une stimulation focale. Pour résoudre ce problème, nous avons développé des matrices spécifiques permettant d'obtenir des stimulations focales du tissu. Nous avons également dans ces travaux de thèse étudié le comportement de l'interface métal/liquide, qui est cruciale pour la réalisation de MEA, en utilisant des techniques d'électrochimie
|
5 |
La combinaison de la stimulation corticale et spinale maximise l'amélioration de la marche après une lésion médullaireDrainville, Roxanne 04 1900 (has links)
Les lésions de la moelle épinière incomplètes (LME) sont associées à des déficits moteurs chroniques. Les thérapies neuroprosthétiques peuvent cibler les voies encore intactes pour traiter les déficits locomoteurs. Puisqu’aucune étude n’a directement comparé l’effet individuel et combiné de la stimulation corticale et spinale sur la récupération de la marche, notre laboratoire a développé une neuroprothèse qui stimule les circuits moteurs corticaux et spinaux en synchronisation avec la marche. Nous avons évalué les effets immédiats de la stimulation corticale et/ou spinale sur la locomotion sur tapis roulant à l’état intact et suivant une LME au niveau thoracique 9 (T9). Les rats ont été implantés avec des électrodes électromyographiques (EMG) dans les muscles des membres postérieurs, une matrice de 32 électrodes dans le cortex moteur et des électrodes au niveau des segments lombaire (L2) et sacré (S1). L’analyse de la cinématique de la marche a démontré une amélioration synergique des mouvements des jambes grâce à la stimulation spatiotemporelle du cortex moteur, de L2 et S1 comparativement aux stimulations individuelles. Les effets à long terme ont été évalués suite à l’intégration de la neuroprothèse cortico-spinale à un protocole de réadaptation de 3 semaines. Sur une tâche d’échelle, les rats entraînés avec la stimulation corticale, avec ou sans stimulation spinale, ont obtenu des performances supérieures, démontrant l’importance de la stimulation corticale pour la récupération du contrôle moteur volontaire. Ces expériences ont permis une compréhension approfondie des réponses motrices spécifiques à chaque type de stimulation selon différents paramètres pour l’optimisation de la neuroprothèse. Nos résultats ont démontré l’importance d’adopter une approche combinée en intégrant la stimulation corticale et spinale et pourront guider de futurs protocoles de réadaptation après une LME. / Incomplete spinal cord injuries (SCI) are associated with chronic locomotor deficits. Neuroprosthetic therapies can target the remaining pathways to treat locomotor deficits. Because no study has directly compared the individual and combined effects of cortical and spinal stimulation on locomotor recovery, our laboratory has developed a neuroprosthesis that stimulates cortical and spinal motor circuits in synchrony with gait. We evaluated the immediate effects of cortical and/or spinal stimulation on treadmill locomotion at the intact sate and following SCI at thoracic level 9 (T9). Rats were implanted with electromyographic electrodes (EMGs) in the hindlimb muscles, a 32-channel array the motor cortex and electrodes over the lumbar (L2) and sacral (S1) spinal segments. Gait analysis demonstrated synergistic improvement in leg movements with the spatiotemporal cortical, L2 and S1 stimulations compared to individual stimulations. Long-term effects were evaluated following the integration of the cortico-spinal neuroprosthesis into a 3-week rehabilitation protocol. In the ladder task, rats trained with cortical stimulation, with or without spinal stimulation, achieved superior performances, demonstrating the importance of cortical stimulation for the recovery of voluntary motor control. These experiments provide a comprehensive understanding of specific motor responses to each type of stimulation under different parameters for the neuroprosthesis optimization. Our results underscore the importance of adopting a combined approach by integrating cortical and spinal stimulation, which could guide future rehabilitation protocols after spinal cord injury.
|
Page generated in 0.0357 seconds