• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 187
  • 58
  • 50
  • 33
  • 22
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 453
  • 453
  • 453
  • 70
  • 68
  • 67
  • 58
  • 54
  • 54
  • 53
  • 52
  • 48
  • 48
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Comprehensive Molecular Diagnosis of a Large Cohort of Japanese Retinitis Pigmentosa and Usher Syndrome Patients by Next-Generation Sequencing / 日本人網膜色素変性及びアッシャー症候群に対する次世代シーケンサーを用いた網羅的遺伝子スクリーニング

Oishi, Maho 23 January 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20789号 / 医博第4289号 / 新制||医||1025(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 山田 亮, 教授 大森 孝一, 教授 高田 穣 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
162

A Study of Mutagenesis by Translesion Synthesis DNA Polymerases Using A Novel High-throughput Mutation Assay System

Chen, Yizhang January 2018 (has links)
No description available.
163

Which Test is Best? Evaluating the Diagnostic Yield of Sequencing-based Testing Approaches for Patients with Neurodevelopmental Disorders at a Pediatric Institution: A Retrospective Chart Review

Little, Nicholas J. 11 July 2019 (has links)
No description available.
164

Low Frequency Airway Epithelial Cell Mutation Pattern Associated with Lung Cancer Risk

Craig, Daniel John 28 August 2019 (has links)
No description available.
165

Využití nových metod analýzy genomu ve studiu molekulární podstaty vzácných geneticky podmíněných onemocnění. / Genome analysis techniques and their applications in elucidation of molecular underpinnings of rare genetic diseases.

Přistoupilová, Anna January 2020 (has links)
Rare diseases represent a heterogeneous group of more than ~7000 different diseases, affecting 3,5-5,9% of the global population. Most rare diseases are genetic, but causal genes are known only in some of them. Many patients with rare diseases remain without a diagnosis, which is crucial for genetic counseling, prevention, and treatment. With the development of new methods of genome analysis, decreasing cost of sequencing, and increasing knowledge of the human genome, a new concept for identifying disease-causing genes was established. It is based on comparing the patient's genetic variability with the genetic variability of the general population. This dissertation describes next-generation sequencing technologies (NGS), bioinformatic analysis of acquired data and their applications in the elucidation of molecular underpinnings of rare genetic diseases. These procedures have led to the identification and characterization of causal genes and gene mutations in autosomal dominant tubulointerstitial kidney disease (SEC61A1, MUC1), autosomal dominant neuronal ceroid lipofuscinosis (CLN6, DNAJC5), neurodegenerative disease of unknown etiology (VPS15), Acadian variant of Fanconi syndrome (NDUFAF6) and spinal muscular atrophy (SMN1). The application of novel genome analysis techniques increased the...
166

Geneticky podmíněné faktory progrese vybraných chronických nefropatií. / Genetically determined progression factors of selected chronic nephropathies

Obeidová, Lena January 2020 (has links)
Polycystic kidney disease is a severe genetic disease occurring in both adult and pediatric patients. The basic characteristic of this disease is the development and progressive enlargement of renal cysts gradually replacing functional kidney tissue. This leads to renal failure in many patients. However, renal cysts may also occur in a number of other diseases, including multisystem syndromes. This complicates differential diagnosis in some patients. In our study, we first focused on the diagnosis and characterization of genotypic-phenotypic relationships in patients with polycystic disease arising in childhood, later we extended our study to adult patients and patients with unclear clinical diagnosis. At the same time, we expanded the portfolio of analyzed disorders to a number of diseases in which the phenotype of polycystic kidneys may occur, and noncystic diseases as well. During our project, massive parallel sequencing was used to analyze 149 patients - 128 with cystic and 21 with noncystic clinically diagnosed nephropathies. At the same time, the findings were verified by Sanger sequencing in 176 relatives of our probands. Mutation detection reached 59% in cystic patients, and 43% in non-cystic patients, respectively. In many patients, molecular genetic analysis revealed a different etiology...
167

Characterization of co-infections and minor variants of BK polyomavirus in clinical sample by NGS

Khatoon, Safia January 2020 (has links)
BK polyomavirus (BKV) is associated with urinary apparatus pathogenesis in kidney transplant recipient. Immune suppression triggers BKV reactivation that potentially causes polyomavirus associated nephropathy (PVAN), a major post-transplant problem causes graft rejection. Antiviral immunity plays the key role in limiting the viral replication but selection by the immune system or antivirals may cause the evolvement of escape variants with higher fitness. Mutation in VP1, the major capsid protein can allow BKV to escape neutralizing antibodies. In an attempt to detect co-infection and minor variants, BKV VP1 genomic region was amplified by PCR and analysed by deep sequencing from plasma samples of four kidney transplant recipients. BKV genotype I and IV was identified in patients and each patient was detected with one BKV genotype. Multiple point mutations and subsequent changes in amino acid were detected in majority, three out of four, of the patients.
168

Variant Detection Using Next Generation Sequencing Data

Pyon, Yoon Soo 08 March 2013 (has links)
No description available.
169

Stoneflies of Unusual Size: Population Genetics and Systematics Within Pteronarcyidae (Plecoptera)

Sproul, John S. 12 July 2012 (has links) (PDF)
Chapter 1. The family Pteronarcyidae (Plecoptera) is a highly studied group of stoneflies and very important to a wide variety of aquatic studies. Several phylogenies have been proposed for this group recent decades, however there is little congruence between the various topologies. The present study revises the phylogeny of the group by combining molecular data from mitochondrial cytochrome oxidase subunit II, ribosomal subunit 12S, ribosomal subunit 16S, and nuclear loci ribosomal subinit 18S and Histone H3, with published morphological data in a parsimony-based total evidence analysis. The analysis produced a well-supported phylogeny with novel relationships within the genus Pteronarcys. Maximum Likelihood and Bayesian analyses produced topologies congruent with parsimony analysis. Character mapping revealed several homoplasious morphological characters that were previously thought to be homologous. Chapter 2. Phylogeographic studies in aquatic insects provide valuable insights into mechanisms that shape the genetic structure of aquatic communities. Yet studies that include broad geographic areas are uncommon for this group. We conducted a broad scale phylogeographic analysis of P. badia across western North America. In order to allow us to generate a larger mitochondrial data set, we used 454 seqeuncing to reconstruct the complete mitochondrial genome in the early stages of the project. Our analysis reveals what appears to be a complex history of isolation and multiple invasions among some lineages. The study provides evidence of multiple glacial refugia and suggests that historical climactic isolations have been important mechanisms in determining genetic structure of insects in western North America. Our ability to generate a large mitochondrial data set through mitochondrial genome reconstruction greatly improved nodal support of our mitochondrial gene tree, and allowed us to make stronger inference of relationships between lineages and timing of divergence events.
170

Application of Genome Reduction, Next Generation Sequencing, and KASPar Genotyping in Development, Characterization, and Linkage Mapping of Single Nucleotide Polymorphisms in the Grain Amaranths and Quinoa

Smith, Scott Matthew 13 March 2013 (has links) (PDF)
The grain amaranths (Amaranthus sp.) and quinoa (Chenopodium quinoa Willd.) are important seed crops in South America. These crops have gained international attention in recent years for their nutritional quality and tolerance to abiotic stress. We report the identification and development of functional single nucleotide polymorphism (SNP) assays for both amaranth and quinoa. SNPs were identified using a genome reduction protocol and next generation sequencing. SNP assays are based on KASPar genotyping chemistry and were detected using the Fluidigm dynamic array platform. A diversity screen consisting of 41 amaranth accessions showed that the minor allele frequency (MAF) of the amaranth markers ranged from 0.05 to 0.5 with an average MAF of 0.27. A diversity screen of 113 quinoa accessions showed that the MAF of the quinoa markers ranged from 0.02 to 0.5 with an average MAF of 0.28. Linkage mapping in amaranth produced a linkage map consisting of 16 linkage groups, presumably corresponding to each of the 16 amaranth haploid chromosomes. This map spans 1288 cM with an average marker density of 3.1 cM per marker. Linkage mapping in quinoa resulted in a linkage map consisting of 29 linkage groups with 20 large linkage groups, spanning 1,404 cM with a marker density of 3.1 cM per SNP marker. The SNPs identified here represent important genomic tools needed for genetic dissection of agronomically important characteristics and advanced genetic analysis of agronomic traits in amaranth and quinoa. We also describe in detail the scalable and cost effective SNP genotyping method used in this research. This method is based on KBioscience's competitive allele specific PCR amplification of target sequences and endpoint fluorescence genotyping (KASPar) using a FRET capable plate reader or Fluidigm's dynamic array high throughput platform.

Page generated in 0.1354 seconds