• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FORMATION OF C-C COVALENT BOND ON THE SURFACE OF POLY (CHLOROTRIFLUOROETHYLENE) BY SUBSTITUTION

Mazi, Wafa A. 13 December 2010 (has links)
No description available.
2

The identification and down selection of suitable cathode materials for use in next generation thermal batteries

Giagloglou, Kyriakos January 2017 (has links)
In this work new novel cathode materials such as transition-metal sulfides, chlorides or fluorides were investigated and studied for their use in lithium ion thermal batteries. All cathodes were synthesized by a solid state reaction in sealed quartz tubes with a duration of firing for 1 week at high temperatures ( > 500 °C). All structures of compounds were probed by powder X-ray diffraction and the morphology and shape of crystallites of cathodes were characterized by scanning electron microscopy. The electrochemical properties of the batteries were investigated by galvanostatic discharge and galvanostatic intermittent titration technique at high temperatures (> 400 °C). All the batteries used as an anode Li₁₃Si₄, as an electrolyte LiCl-KCl eutectic and as separator MgO. All the products of the discharge mechanism were confirmed using powder X-ray diffraction and EDX analysis. CoNi₂S₄ and NiCo₂S₄ exhibit two voltage plateaux vs Li₁₃Si₄ at 500 °C, one at around 1.75 V and the second at 1.50 V. Capacities of 350 and 290 mA h g⁻¹ were achieved, respectively. NiS, Co₃S₄ and Co₉S₈ were confirmed as the products of discharge mechanism. ZrS₃ exhibits a single flat voltage plateau of 1.70 V at a current density of 11 mA/cm² and a capacity of 357 mA h g⁻¹, at 500 °C was obtained. A new material, LiZr₂S₄, was identified as the product of the electrochemical process, which can be indexed to a = 10.452(8) Å cubic unit cell. KNiCl₃ was tested at different current densities from 15 mA/cm² to 75 mA/cm² and a high cell voltage, with a capacity of 262 mA h g⁻¹ was achieved at 425 °C. Ni metal, KCl and LiCl were confirmed as the products of the discharge mechanism. Li₂MnCl₄ was tested at the same current densities as KNiCl₃ at 400 °C and a capacity of 254 mA h g⁻¹ was achieved. Mn metal and LiCl were confirmed as the products after discharge. Li₆VCl₈ has a capacity of 145 mA h g⁻¹ and a flat voltage plateau of 1.80 V at 500 °C. NiCl₂ has also a capacity of 360 mA h g⁻¹ and a high voltage profile of 2.25 V at 500 °C. CoCl₂ exhibits a lower capacity of 332 mA h g⁻¹ and lower voltage profile compared to NiCl₂ at 500 °C. CuF₂ and PbF₂ were tested at 500 °C. PbF₂ exhibits a single flat voltage plateau of 1.25 V and a capacity of 260 mA h g⁻¹ was obtained. CuF₂ has a high voltage profile but a voltage plateau could not be obtained.
3

Magnetization Study of the Heavy-Fermion System Yb(Rh1-xCox)2Si2 and of the Quantum Magnet NiCl2-4SC(NH2)2

Pedrero Ojeda, Luis 25 June 2013 (has links) (PDF)
This thesis presents a comprehensive study of the magnetic properties and of quantum phase transitions (QPTs) of two different systems which have been investigated by means of low-temperature magnetization measurements. The systems are the heavy-fermion Yb(Rh1-xCox)2Si2 (metallic) and the quantum magnet NiCl2-4SC(NH2)2 (insulator). Although they are very different materials, they share two common properties: magnetism and QPTs. Magnetism originates in Yb(Rh1-xCox)2Si2 from the trivalent state of the Yb3+ ions with effective spin S = 1=2. In NiCl2-4SC(NH2)2, the magnetic Ni2+ ions have spin S = 1. These magnetic ions are located on a body-centered tetragonal lattice in both systems and, in this study, the QPTs are induced by an external magnetic field. In Yb(Rh1-xCox)2Si2 the evolution of magnetism from itinerant in slightly Co-doped YbRh2Si2 to local in YbCo2Si2 is examined analyzing the magnetic moment versus chemical pressure x phase diagram in high-quality single crystals, which indicates a continuous change of dominating energy scale from the Kondo to the RKKY one. The physics of the antiferromagnet YbCo2Si2 can be completely understood. On the other hand, the physics of pure and slightly Co-containing YbRh2Si2 is much more complex, due to the itinerant character of magnetism and the vicinity of the system to an unconventional quantum critical point (QCP). The field-induced AFM QCP in Yb(Rh0.93Co0.07)2Si2 and in pure YbRh2Si2 under a pressure of 1.5GPa is characterized by means of the magnetic Grüneisen ratio. The final part of this thesis describes quantum criticality near the field-induced QCP in NiCl2-4SC(NH2)2 . These results will be compared to the theory of QPTs in Ising and XY antiferromagnets. Since the XY -AFM ordering can be described as BEC of magnons by mapping the spin-1 system into a gas of hardcore bosons, the temperature dependence of the magnetization for a BEC is analytically derived and compared to the results just below the critical field. The remarkable agreement between the BEC theory and experiments in this quantum magnet is one of the most prominent examples of the concept of universality.
4

Magnetization Study of the Heavy-Fermion System Yb(Rh1-xCox)2Si2 and of the Quantum Magnet NiCl2-4SC(NH2)2

Pedrero Ojeda, Luis 28 May 2013 (has links)
This thesis presents a comprehensive study of the magnetic properties and of quantum phase transitions (QPTs) of two different systems which have been investigated by means of low-temperature magnetization measurements. The systems are the heavy-fermion Yb(Rh1-xCox)2Si2 (metallic) and the quantum magnet NiCl2-4SC(NH2)2 (insulator). Although they are very different materials, they share two common properties: magnetism and QPTs. Magnetism originates in Yb(Rh1-xCox)2Si2 from the trivalent state of the Yb3+ ions with effective spin S = 1=2. In NiCl2-4SC(NH2)2, the magnetic Ni2+ ions have spin S = 1. These magnetic ions are located on a body-centered tetragonal lattice in both systems and, in this study, the QPTs are induced by an external magnetic field. In Yb(Rh1-xCox)2Si2 the evolution of magnetism from itinerant in slightly Co-doped YbRh2Si2 to local in YbCo2Si2 is examined analyzing the magnetic moment versus chemical pressure x phase diagram in high-quality single crystals, which indicates a continuous change of dominating energy scale from the Kondo to the RKKY one. The physics of the antiferromagnet YbCo2Si2 can be completely understood. On the other hand, the physics of pure and slightly Co-containing YbRh2Si2 is much more complex, due to the itinerant character of magnetism and the vicinity of the system to an unconventional quantum critical point (QCP). The field-induced AFM QCP in Yb(Rh0.93Co0.07)2Si2 and in pure YbRh2Si2 under a pressure of 1.5GPa is characterized by means of the magnetic Grüneisen ratio. The final part of this thesis describes quantum criticality near the field-induced QCP in NiCl2-4SC(NH2)2 . These results will be compared to the theory of QPTs in Ising and XY antiferromagnets. Since the XY -AFM ordering can be described as BEC of magnons by mapping the spin-1 system into a gas of hardcore bosons, the temperature dependence of the magnetization for a BEC is analytically derived and compared to the results just below the critical field. The remarkable agreement between the BEC theory and experiments in this quantum magnet is one of the most prominent examples of the concept of universality.:1 Introduction 1 2 Theoretical concepts 5 2.1 Ce- and Yb-based 4f-electron systems . . . . . . . . . . . . . . . . 5 2.1.1 Crystalline electric field . . . . . . . . . . . . . . . . . . . . 6 2.2 Heavy-fermion systems . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Fermi liquid theory . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Kondo eff ect . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 RKKY interaction . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Doniach phase diagram . . . . . . . . . . . . . . . . . . . . . 12 2.3 Quantum phase transitions . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Spin density wave scenario . . . . . . . . . . . . . . . . . . . 16 2.3.2 Local quantum critical point scenario . . . . . . . . . . . . . 17 2.3.3 Global phase diagram . . . . . . . . . . . . . . . . . . . . . 18 2.3.4 The Grüneisen ratio . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Spins are almost bosons . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Experimental methods 31 3.1 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 Magnetization measurements . . . . . . . . . . . . . . . . . 32 3.2 Experimental techniques . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.1 Faraday magnetometer . . . . . . . . . . . . . . . . . . . . . 35 3.2.1.1 Measurement of the force . . . . . . . . . . . . . . 35 3.2.1.2 Capacitive cell . . . . . . . . . . . . . . . . . . . . 35 3.2.1.3 Design and performance of the cell . . . . . . . . . 37 3.2.1.4 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1.5 Background contributions . . . . . . . . . . . . . . 42 3.2.1.6 Calibration . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1.7 Magnets characteristics . . . . . . . . . . . . . . . 44 3.2.1.8 Installation in a dilution refrigerator . . . . . . . . 45 3.2.2 SQUID magnetometer . . . . . . . . . . . . . . . . . . . . . 47 3.3 Magnetization measurements at high pressure . . . . . . . . . . . . 48 3.3.1 Experimental setup for M(H - T) under pressure . . . . . . . 50 4 Yb(Rh1-xCox)2Si2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 4.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . 51 4.1.1 The heavy-fermion compound YbRh2Si2 . . . . . . . . . . . 53 4.1.2 The antiferromagnet YbCo2Si2 . . . . . . . . . . . . . . . . 58 4.1.3 Isoelectronic substitution of Co for Rh: Yb(Rh1-xCox)2Si2 . . . .62 4.2 Itinerant vs. local magnetism in Yb(Rh1-xCox)2Si2 . . . . . . . . . 67 4.2.1 Magnetization of Yb(Rh1-xCox)2Si2 with 0 x 0.27 . . . 67 4.2.1.1 YbRh2Si2 and Yb(Rh0.93Co0.07)2Si2 . . . . . . . . . 67 4.2.1.2 Yb(Rh0.88Co0.12)2Si2 . . . . . . . . . . . . . . . . . 71 4.2.1.3 Yb(Rh0.82Co0.18)2Si2 . . . . . . . . . . . . . . . . . 73 4.2.1.4 Yb(Rh0.73Co0.27)2Si2 . . . . . . . . . . . . . . . . . 74 4.2.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.2 Magnetization of Yb(Rh1-xCox)2Si2 with x = 0.58 and x = 1 . . . . . 79 4.2.3 Evolution from itinerant to local magnetism . . . . . . . . . 83 4.3 Field-induced QCP in Yb(Rh0.93Co0.07)2Si2 . . . . . . . . . . . . . . 88 4.4 YbRh2Si2 under hydrostatic pressure . . . . . . . . . . . . . . . . . 96 4.4.1 Magnetization vs. field . . . . . . . . . . . . . . . . . . . . . 97 4.4.2 Comparison with 1.28 GPa . . . . . . . . . . . . . . . . . . . 99 4.4.3 Magnetization vs. temperature . . . . . . . . . . . . . . . . 101 4.4.4 Field-induced QCP at 1.5 GPa . . . . . . . . . . . . . . . . 103 4.4.5 The magnetic Grüneisen ratio . . . . . . . . . . . . . . . . . 105 4.5 The magnetic phase diagrams of YbCo2Si2 . . . . . . . . . . . . . . 107 4.5.1 Magnetization vs. temperature . . . . . . . . . . . . . . . . 107 4.5.2 Magnetization vs. fi eld . . . . . . . . . . . . . . . . . . . . . 109 4.5.3 H - T phase diagrams . . . . . . . . . . . . . . . . . . . . 114 4.5.4 Ac-susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 117 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5 NiCl2-4SC(NH2)2 . . . . . . . . . . . . . . . . . . . . . . . .121 5.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . 121 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2.1 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.2.2 Comparison between theory and experiment . . . . . . . . . 126 5.2.3 Magnetic phase diagram . . . . . . . . . . . . . . . . . . . . 129 5.2.4 Speci c heat . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2.5 The magnetic Grüneisen ratio . . . . . . . . . . . . . . . . . 131 5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6 General conclusions . . . . . . . . . . . . . . . . . . . . . . . .135 Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . .139

Page generated in 0.0186 seconds