• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 8
  • Tagged with
  • 26
  • 26
  • 26
  • 14
  • 13
  • 13
  • 13
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electronic structure and exchange integrals of low-dimensional cuprates

Rosner, Helge 19 September 1999 (has links) (PDF)
The physics of cuprates is strongly influenced by the dimension of the cooper-oxygen network in the considered crystals. Due to the rich manifoldness of different network geometries realized by nature, cuprates are ideal model systems for experimental and theoretical studies of low-dimensional, strongly correlated systems. The dimensionality of the considered model compounds varies between zero and three with a focus on one- and two-dimensional compounds. Starting from LDA band structure calculations, the relevant orbitals for the low-energy physics have been characterized together with a discussion of the chemical bonding in the investigated compounds. By means of a systematic approach for various compounds, the influence of particular structural components on the electronic structure could be concluded. For the undoped cuprate compounds, paramagnetic LDA band structure calculations yield a metallic groundstate instead of the experimentally observed insulating behavoir. The strong correlations were taken into account using Hubbard- or Heisenberg-like models for the investigation of the magnetic couplings in cuprates. The necessary parameters were obtained from tight-binding parameterizations of LDA band structures. Finallly, several ARPES as well as XAS measurements were interpreted. The present work shows, that the combination of experiment, LDA, and model calculations is a powerful tool for the investigation of the electronic structure of strongly correlated systems.
22

Electronic structure and exchange integrals of low-dimensional cuprates

Rosner, Helge 12 October 1999 (has links)
The physics of cuprates is strongly influenced by the dimension of the cooper-oxygen network in the considered crystals. Due to the rich manifoldness of different network geometries realized by nature, cuprates are ideal model systems for experimental and theoretical studies of low-dimensional, strongly correlated systems. The dimensionality of the considered model compounds varies between zero and three with a focus on one- and two-dimensional compounds. Starting from LDA band structure calculations, the relevant orbitals for the low-energy physics have been characterized together with a discussion of the chemical bonding in the investigated compounds. By means of a systematic approach for various compounds, the influence of particular structural components on the electronic structure could be concluded. For the undoped cuprate compounds, paramagnetic LDA band structure calculations yield a metallic groundstate instead of the experimentally observed insulating behavoir. The strong correlations were taken into account using Hubbard- or Heisenberg-like models for the investigation of the magnetic couplings in cuprates. The necessary parameters were obtained from tight-binding parameterizations of LDA band structures. Finallly, several ARPES as well as XAS measurements were interpreted. The present work shows, that the combination of experiment, LDA, and model calculations is a powerful tool for the investigation of the electronic structure of strongly correlated systems.
23

Charge properties of cuprates: ground state and excitations

Waidacher, Christoph 17 March 2000 (has links)
This thesis analyzes charge properties of (undoped) cuprate compounds from a theoretical point of view. The central question considered here is: How does the dimensionality of the CU-O sub-structure influence its charge degrees of freedom? The model used to describe the Cu-O sub-structure is the three- (or multi-) band Hubbard model. Analytical approaches are employed (ground-state formalism for strongly correlated systems, Mori-Zwanzig projection technique) as well as numerical simulations (Projector Quantum Monte Carlo, exact diagonalization). Several results are compared to experimental data. The following materials have been chosen as candidates to represent different Cu-O sub-structures: Bi2CuO4 (isolated CuO4 plaquettes), Li2CuO2 (chains of edge-sharing plaquettes), Sr2CuO3 (chains of corner-sharing plaquettes), and Sr2CuO2Cl2 (planes of plaquettes). Several results presented in this thesis are valid for other cuprates as well. Two different aspects of charge properties are analyzed: 1) Charge properties of the ground state 2) Charge excitations. (gekürzte Fassung)
24

From cuprates to manganites: spin and orbital liquids

Kilian, Rolf 05 July 1999 (has links) (PDF)
Both cuprates and manganites belong to the transition metal oxides. The physics of these compounds is characterized by a dualism of local electron interaction and itinerant charge motion. In the present work, several key issues of metallic cuprates and manganites are addressed on a theoretical level, while close connection to recent experimental work is kept. The work is based on the notion of spin and orbital liquids, representing elegant tools to handle the strongly correlated nature of the metallic state in an efficient and transparent manner. A concise introduction to the physics of cuprates and manganites as well as to the methods employed is presented at the beginning of the work. In a subsequent part, we show that the peculiar magnetic response of metallic cuprates upon impurity doping can be successfully explained within a spin-liquid picture. The remainder of the work is devoted to the metallic state of manganites. Elaborating on the notion of an orbital liquid, the interplay of electron correlations, orbital degeneracy, and double exchange is studied. Thereby, the unconventionally large incoherent optical spectrum of metallic manganites and the pronounced softening of the magnon spectrum observed in experiment can be explained. Finally, a theory of the metal-insulator transition of manganites is presented which is based upon the newly introduced notion of orbital polarons. In general, we believe the close agreement of our results with experiment to strongly support the validity of our approach, giving new insight into the spectacular and sometimes as-tonishing physics of transition metal oxides.
25

Konsequenzen aus dem Wandel berufsförmiger Facharbeit für die Qualifizierung von Facharbeitern und Gesellen in handwerklichen Baugewerken im europäischen Vergleich

Bünning, Frank 04 January 2000 (has links)
In der vorliegenden Publikation werden die Auswirkungen des gegenwärtigen Strukturwandels in der europäischen Bauwirtschaft auf die Qualifikationsanforderungen an die Arbeitskräfte dieses Sektors untersucht. Der Autor entwickelt einen Lösungsansatz, der inhaltlich und strukturell die Defizite beruflicher Bildung auf dem Gebiet der Instandsetzung und Instandhaltung von Bauwerken ausgleicht.
26

From cuprates to manganites: spin and orbital liquids

Kilian, Rolf 26 July 1999 (has links)
Both cuprates and manganites belong to the transition metal oxides. The physics of these compounds is characterized by a dualism of local electron interaction and itinerant charge motion. In the present work, several key issues of metallic cuprates and manganites are addressed on a theoretical level, while close connection to recent experimental work is kept. The work is based on the notion of spin and orbital liquids, representing elegant tools to handle the strongly correlated nature of the metallic state in an efficient and transparent manner. A concise introduction to the physics of cuprates and manganites as well as to the methods employed is presented at the beginning of the work. In a subsequent part, we show that the peculiar magnetic response of metallic cuprates upon impurity doping can be successfully explained within a spin-liquid picture. The remainder of the work is devoted to the metallic state of manganites. Elaborating on the notion of an orbital liquid, the interplay of electron correlations, orbital degeneracy, and double exchange is studied. Thereby, the unconventionally large incoherent optical spectrum of metallic manganites and the pronounced softening of the magnon spectrum observed in experiment can be explained. Finally, a theory of the metal-insulator transition of manganites is presented which is based upon the newly introduced notion of orbital polarons. In general, we believe the close agreement of our results with experiment to strongly support the validity of our approach, giving new insight into the spectacular and sometimes as-tonishing physics of transition metal oxides.

Page generated in 0.0745 seconds