• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 32
  • 22
  • 10
  • 10
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 171
  • 140
  • 36
  • 34
  • 26
  • 20
  • 19
  • 17
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design and fabrication of highly efficient electrooptic modulators using bragg grating reflectors

Kim, Ryoung-Han 12 April 2006 (has links)
Bragg grating reflectors etched in amorphous silicon overlay films have been integrated with Ti:LiNbO3 optical waveguides. With a 12.5 mm long grating segment and an etch depth of ~ 93 nm in a 105 nm-thick silicon film, a narrow (0.05 nm) spectral bandwidth with a record high transmission dip (> 20 dB) was achieved at a wavelength of ~1542 nm for TE polarization on an x-cut, y-propagating substrate. The reflectance in the channel waveguides is found to be strongly dependent on the depth of the etched grating. The 3-dB bandwidth of 0.05 nm obtained for all tested samples is the smallest reported for waveguides in LiNbO3. The effect of the Bragg waveguide loss factor on the transmittance and reflectance spectra is investigated using a model for contra-directional coupling that includes an attenuation coefficient. The Bragg grating spectral characteristics are exploited to fabricate distributed Bragg feedback modulators (DBFM) and Bragg reflector Fabry-Perot modulators (BFPM). The sharp cut-off in transmission and reflection spectra, which is an inherent characteristic of Bragg grating, was tuned by applying voltage via the linear electrooptic effect, to produce intensity modulation. The Bragg grating based modulators consume less electric power compared to polarization intensity modulators (PIMs). The DBFM demonstrates 1/1.6 times the modulating voltage of a PIM with identical waveguide and electrode structure. The BFPM shows 1/3.3 times the modulating voltage of the PIM. No difference in the frequency response is observed among the three modulators. Comparison of the modulation sensitivity in the linear region indicates that the Bragg grating based modulators provide better sensitivity than that of the PIM with identical waveguide and electrode structure. These results indicate the potential advantage of the Bragg grating based modulators for enhanced modulation efficiency over conventional modulators. Further improvements can be expected from the optimization of the electrode design.
72

Frequency and temperature characteristics of surface acoustic wave devices

Kao, Kuo-Sheng 09 July 2004 (has links)
The temperature coefficient of frequency (TCF), electromechanical coupling coefficient (K2) and surface acoustic wave (SAW) velocity are the major factors when choosing the substrates for surface acoustic wave devices. There exist a wide range for the designer to controll the above factors. This thesis adopted several methods to change the properties of SAW devices. First, the SAW velocity is increased using aluminum nitride (AlN) thin films deposited on z-cut LiNbO3 substrates. Besides, the ST-quartz is adopted as substrate for comparison to clarify the temperature characteristic of AlN itself. The well-known positive TCF material, silicon dioxide (SiO2), is also deposited on z-cut LiNbO3 substrates for the purpose of improving the TCF of SAW devices. Finally, the optimal piezoelectric bilayer structures will be conducted for the improvement of the properties of SAW devices on LiNbO3 substrate. AlN and SiO2 thin films are selected to be deposited on z-cut LiNbO3 and ST-cut quartz substrates using the reactive RF magnetron sputtering. The characteristics of AlN thin films are evaluated using the analyses of XRD, SEM and AFM. The optimized growth parameters of highly c-axis oriented AlN films deposited on LiNbO3 substrate are sputtering pressure of 3.5 mTorr, nitrogen concentration (N2/N2+Ar) of 60%, RF power density of 8.1 W/cm2 and substrate temperature of 400¢J. On the other hand, the optimal parameters for highly c-axis oriented AlN films deposited on quartz substrate are sputtering pressure of 15 mTorr, nitrogen concentration of 30%, RF power density of 8.1 W/cm2 and substrate temperature of 400¢J. In addition, the interdigital transducers (IDTs) are fabricated on LiNbO3, AlN/LiNbO3, SiO2/LiNbO3, quartz and AlN/quartz substrates, respectively. The characteristic parameters of SAW devices are measured by Hewlett-Packard (HP) 8720 network analyzer. For SiO2/LiNbO3 SAW devices, the SiO2 thin films reveal the compensation of TCF, but the surface wave velocity remain almost unchanged. For AlN/quartz SAW devices, the positive temperature coefficient of AlN is clarfied by taking ST-quartz substrates as comparison. For AlN/LiNbO3 SAW devices, the characteristic improvements of frequency increase and TCF compensation of LiNbO3 SAW devices are achieved at the same time.
73

Femtosecond near-IR optical parametric oscillator based on periodically poled 5-mol. % MgO-doped lithium niobate

Wu, Ping-Tsung 04 September 2006 (has links)
The synchronously pumped femtosecond optical parametric oscillator (OPO) based on was periodically poled 5-mol.% MgO-doped lithuium niobate was demonstrated by means of non-critical quasi phase matching. The femtosecond OPO is cable of operating at room temperature and shows no photorefractive damage. The spectrum can be tuned by varying the cavity length up to 70 £gm, the temperature of the nonlinear crystal from room temperature to 150¢J, and the grating periods. The cavity was designed to resonate at 1.33 £gm with bandwidth of 100 nm. The maximum output intensity of the signal is 43 mW with TEM00 mode. The signal slope efficiency is 11%. The spectrum range of the idler is tunable from 1.8 to 2.8 £gm.
74

Monochromatic-Tunable Terahertz-Wave Sources Based on Nonlinear Frequency Conversion Using Lithium Niobate Crystal

Suizu, Koji, Kawase, Kodo, 川瀬, 晃道 03 1900 (has links)
No description available.
75

The Properties of Tantalate Modified Lithium Niobate Pyroelectric Thin Film Detectors Prepared by the Sol-Gel Processes

Wu, Jui-Chuan 03 July 2003 (has links)
The Ta-modified niobate lithium [LiNb1-xTaxO3, abbreviated to LNT] thin films were deposited on Pt/Ti/SiO2/Si substrates by spin coating with sol-gel technology and rapid thermal processing in this thesis. 1,3 propanediol was used as solvent to minimize the number of cycles of spin coating and drying processes to obtain the desired thickness of thin film. By changing the Ta content (x=0~1), the effects of various processing parameters on the thin films growth are studied. The effects of various Ta content on the response of pyroelectric IR detector devices are studied also. Experimental results reveal that the Ta content will influence strongly on grain size, dielectricity, ferroelectricity and pyroelectricity of LNT thin films. With the increase of Ta content, the grain size of LNT thin film decreases slightly, and highly c-axis orientated LNT films have been obtained for x=0.2. With the increase of Ta content, The relative dielectric constant of LNT thin film increases from 33 up to 62. The dielectric loss (tand) increases from 0.00374 to 0.00686,Coercive Field (Ec) decreases from 81.09KV/cm to 32.07KV/cm, and Remanent polarization (Pr) decreases from 8.48 mC/cm2 to 2.2 mC/cm2, pyroelctric coefficient (g) increases from 2.76´10-8 C/cm2K up to 4.51´10-8 C/cm2K with an increase of Ta content. In addition, the results also show that the LNT thin film possesses the largest figures of merit Fv (2.66¡Ñ10-10 Ccm/J) and Fm (2.57¡Ñ10-8 Ccm/J) at the heating temperature of 700¢J and Ta content of 20mol%. The voltage responsivities (Rv) measured at 70 Hz has a largest value of 7020 V/W with the Ta content of 20mol%. The specific detectivity (D*) measured at 200 Hz has the maximum value of 7.76¡Ñ107 cmHz1/2/W with the Ta content of 20mol%. The results show that LNT(20) pyroelectric thin film detector exists both the maximums of voltage responsivity and specific detecivity. Therefore, optimizing the conditions of this study, LNT(20) thin film will be the most suitable for IR detector application.
76

Design and fabrication of highly efficient electrooptic modulators using bragg grating reflectors

Kim, Ryoung-Han 12 April 2006 (has links)
Bragg grating reflectors etched in amorphous silicon overlay films have been integrated with Ti:LiNbO3 optical waveguides. With a 12.5 mm long grating segment and an etch depth of ~ 93 nm in a 105 nm-thick silicon film, a narrow (0.05 nm) spectral bandwidth with a record high transmission dip (> 20 dB) was achieved at a wavelength of ~1542 nm for TE polarization on an x-cut, y-propagating substrate. The reflectance in the channel waveguides is found to be strongly dependent on the depth of the etched grating. The 3-dB bandwidth of 0.05 nm obtained for all tested samples is the smallest reported for waveguides in LiNbO3. The effect of the Bragg waveguide loss factor on the transmittance and reflectance spectra is investigated using a model for contra-directional coupling that includes an attenuation coefficient. The Bragg grating spectral characteristics are exploited to fabricate distributed Bragg feedback modulators (DBFM) and Bragg reflector Fabry-Perot modulators (BFPM). The sharp cut-off in transmission and reflection spectra, which is an inherent characteristic of Bragg grating, was tuned by applying voltage via the linear electrooptic effect, to produce intensity modulation. The Bragg grating based modulators consume less electric power compared to polarization intensity modulators (PIMs). The DBFM demonstrates 1/1.6 times the modulating voltage of a PIM with identical waveguide and electrode structure. The BFPM shows 1/3.3 times the modulating voltage of the PIM. No difference in the frequency response is observed among the three modulators. Comparison of the modulation sensitivity in the linear region indicates that the Bragg grating based modulators provide better sensitivity than that of the PIM with identical waveguide and electrode structure. These results indicate the potential advantage of the Bragg grating based modulators for enhanced modulation efficiency over conventional modulators. Further improvements can be expected from the optimization of the electrode design.
77

Novel tantalate-niobate films for microwaves

Kim, Jang-Yong January 2005 (has links)
<p>Microwave materials have been widely used in a variety of applications ranging from communication devices to military satellite services, and the study of materials properties at microwave frequencies and the development of functional microwave materials have always been among the most active areas in solid-state physics, materials science, and electrical and electronic engineering. In recent years, the increasing requirements for the development of high speed, high frequency circuits and systems require complete understanding of the properties of materials function at microwave frequencies.</p><p>Ferroelectric materials usually have high dielectric constants, and their dielectric properties are temperature and electric field dependent. The change in permittivity as a function of electric field is the key to a wide range of applications. Ferroelectric materials can be used in fabrication capacitors for electronic industry because of their high dielectric constants, and this is important in the trend toward miniaturization and high functionality of electronic products. The simple tunable passive component based on ferroelectric films is a varactor which can be made as a planar structure, and electrically tunable microwave integrated circuits using ferroelectric thin films can be developed. Therefore, it is very important to characterize the dielectric constant and tunability of ferroelectric thin films.</p><p>This thesis shows experimental results for growth, crystalline properties and microwave characterization of Na0.5K0.5NbO3 (NKN), AgTa0.5Nb0.5O3 (ATN), Ba0.5Sr0.5TiO3 (BST) as well as AgTaO3 (ATO), AgNbO3 (ANO) thin films. The films were grown by Pulsed Laser Deposition (PLD) and rf-magnetron sputtering of a stoichiometric, high density, ceramic NKN, ATN, BST target onto single crystal LaAlO3(LAO), Al2O3 (sapphire), and Nd:YAlO3, and amorphous glass substrates. By x-ray diffractometry, NKN, ATN, BST films on LAO substrates were found to grow epitaxially, whereas films on r-cut sapphire substrates were found to be preferentially (00l) oriented.</p><p>Coplanar waveguide interdigital capacitor (CPWIDC) structures were fabricated by standard photolithography processing and metal lift-off technique. Microwave properties of the NKN/Sapphire and ATN/Sapphire with CPW structures were characterized using on-wafer microwave measurement technique. Measurement setup is composed of network analyzer, probe station, and microwave G-S-G probes. External electric field through the connection between network analyzer and power supply was applied to measure voltage tunability. Measured S-parameter were used for the calculation of capacitance, loss tanδ, tunability and K-factor.</p><p>The NKN films interdigital capacitors with 2 μm finger gap on Nd:YAlO3 showed superior performance compared to ATN in the microwave range from 1 to 40 GHz. Within this range, the voltage tunability (40V, 200 kV/cm) was about 29%, loss tangent ∼ 0.13, K-factor = tunability/tanδ from 152% @ 10GHz to 46% @ 40GHz.</p><p>The microwave performance of ATN film CPWIDC with 2 μm finger gap on sapphire substrate in the microwave range from 1 to 40 GHz showed that frequency dispersion is about 4.3%, voltage tunability was 4.7% @ 20GHz and 200 kV/cm, loss tangent ∼ 0.068 @ 20GHz, K-factor = tunability/tanδ is ranged from 124% @ 10GHz to 35% @ 40GHz.</p><p>The BST films CPWIDC with 2μmfinger gap on Al2O3 substrate showed frequency dispersion of capacitance in the microwave range from 1 to 40 GHz about 17%, voltage tunability = 1 - C(40V)/C(0) ∼ 22.2%, loss tangent ∼ 0.137 @ 20GHz, and K-factor = tunability/tanδ from 281% @ 10GHz to 95% @ 40GHz.</p>
78

Synthesis and processing of KNN powders and thick films for MEMS devices

Lusiola, Tony January 2012 (has links)
Pb-free piezoelectric materials have grown in importance through increased environmental concern related to the presence of Pb and the subsequent legislation that has arisen including directives such as Waste Electrical and Electronic Equipment (WEEE) and the Restriction of Hazardous Substances Directive (RoHS). While much progress has been made on producing Pb-free bulk materials, the need to integrate these next generation Pb-free piezoelectric materials with substrates to form functional micro devices has received less attention and raises a number of challenges. With respect to the high temperature mixed oxide synthesis method, a simple, cost effective and robust low temperature molten hydroxide synthesis (MHS) method derived from the molten salt synthesis (MSS) method, has been developed to produce K0.5Na0.5NbO3 (KNN) small grain powders and is a method that lends itself easily to industrial scale up. A powder/sol gel composite ink film forming technique has been used to produce KNN thick films on silicon substrates. Characterisation of the produced films has shown the films to exhibit piezoelectric coefficients for un-doped material in the region of 30pC/N. The work will report on the Na ion favouring mechanism of the MSS and the related mechanism of the MHS. The work will also report on the dielectric and piezoelectric characteristics of initial KNN thick films produced and an investigation into use of dopants and process modification to improve the KNN thick film’s characteristics.
79

Couplages acousto-optiques dans les cristaux photoniques et phononiques

ROLLAND, Quentin 12 December 2013 (has links) (PDF)
Cette thèse concerne l'étude théorique des mécanismes de couplage acousto-optique dans les matériaux nanostructurés : les cristaux à bandes interdites simultanées photoniques et phononiques, dénommés aussi cristaux phoXoniques. Le but de ce travail est d'explorer le potentiel de ces structures : réduire la consommation énergétique et la taille des composants, en exploitant les phénomènes de confinement et d'ondes lentes. Pour cette étude, des modèles numériques par éléments finis sont développés, ils visent à établir les conditions pour une efficacité accrue et à déterminer les paramètres des réseaux propres à favoriser de larges bandes interdites. La recherche des modes propres confinés optiques et acoustiques propices à l'interaction acousto-optique est ensuite entreprise. Des modèles numériques sont créés pour déterminer le couplage acousto-optique en tenant compte des mécanismes de couplage tels que l'effet photoélastique, optomécanique ou électrooptique.Plusieurs configurations d'interactions sont étudiées afin de déterminer l'impact de l'anisotropie des matériaux, des éléments de symétrie des modes de cavité, de la nature des réseaux et des matériaux qui les constituent tels que le silicium et le niobate de lithium.Enfin, un travail de conception à vocation applicatif est proposé. Il met en avant la possibilité d'exploiter les mécanismes de couplage dans un dispositif de type modulateur confiné dans une cavité acousto-optique.
80

Implementation of AlGaN/GaN based high electron mobility transistor on ferroelectric materials for multifunctional optoelectronic-acoustic-electronic applications

Lee, Kyoung-Keun 02 January 2009 (has links)
This dissertation shows the properties of lithium niobate and lithium tantalate as a promising substrate for III-nitrides, addresses several problems of integrating compound semiconductor materials on LN and LT. It also suggests some solutions of the addressed problems, including furnace anneals at high temperature. While this furnace anneal improved surface smoothness and III-nitride film adhesion, it also caused the repolarization on the congruent LN (48.39 mole % of Li2O) samples. However, the repolarization was not developed in the stoichiometric LN (49.9 mole % of Li2O) samples during the identical thermal treatment. Also, the structural quality of GaN epitaxial layers showed slight improvement when grown on LT substrates over LN substrates. Conventional epitaxial growth technologies were adapted and modified to implement a successful AlGaN/GaN heterostructure on LN (LT). The heterostructure were analyzed to verify the electrical and material properties using several characterization techniques. Finally, it demonstrates AlGaN/GaN-based HEMT devices on ferroelectric materials that will allow the future development of the multifunctional electrical and optical applications.

Page generated in 0.0438 seconds