• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Principles governing the ability of cover crop species to trap nitrate

Grindlay, Douglas J. C. January 1995 (has links)
No description available.
2

Temperature dependence of inorganic nitrogen utilisation by bacteria and microalgae

Reay, David S. January 1999 (has links)
No description available.
3

Variations of alkalinity in the Northeast Atlantic

Müller, Kerstin January 2000 (has links)
Total alkalinity (TA) is an important parameter in determining the uptake capacity of anthropogenic CO2 by the ocean. So far, oceanic carbon cycle models do not accurately represent TA and its variations. A spectrophotometric method was developed to measure variations of TA during two JGOFS cruises to the Northeast Atlantic in the early summer of 1990 and 1991 and in Emiliania huxleyi batch cultures. Short-term precision averaged around ± 0.1 %. A discrepancy of < 0.5% with coulometric results was observed in Na2COa standards. In natural seawater photometric TA was lower than potentiometric and calculated (pCOl, TC02) TA by about 1 and 2%, respectively. Discrepancies varied with hydrographic and/ or biological regime. Possible reasons for methodological shortcomings were considered, but without certified TA standards for different sample types, it was not possible to make an absolute statement about the accuracy of the methods involved. Combining the cruise results, photometric TA ranged by 90 and 20 p.eq kgSW-l in the surface mixed layer (SML) and at sub-thermocline depths, respectively. Some horizontal variation in the SML was related to salinity, but most of it could be linked to coccolithophorid growth during a bloom in 1991. Associated small-scale changes in TA of up to 40 J.leq kgSW-t occurred over 40 km. Independent estimates of seasonal net production of PlC and its relation to that of particulate organic carbon (POC) were established. Based on preceding investigations, a seasonal and latitudinal sequence of changes in surface TA was proposed which was corroborated by the photometric results from this study. The culture experiments revealed reductions in photometric TA which were half of those expected from parallel changes in measured PlC and nitrate concentrations. Proposed explanations for this included methodological shortcomings of all three methods and increases in final TA due to algal sulphate uptake and/or organic acid release. As the main conclusion, further targeted intercomparisons of TA methods are needed to identify the causes for errors in various TA methods in samples covering realistic hydrographic and biological ranges.
4

Relationship among nitrogen nutrition, photoperiod and photoperiodic injury in tomato (Solanum lycopersicum)

Orozco Gaeta, Maria Emilia 03 October 2012 (has links)
This thesis is an investigation of photoperiodic injury (PI) in tomato plants and practices to alleviate the problem. PI is a physiological disorder characterized by chlorosis and necrosis of leaves when plants are grown under either long photoperiods or non-24 h light/ dark cycles. Solanum lycopersicum L. (tomato) is particularly susceptible to PI. Our group has shown a correlation between PI and altered circadian expression patterns for the nitrate assimilatory enzymes nitrate reductase (NR) and nitrite reductase (NiR) in tomato, resulting in accumulation of the toxic metabolite nitrite, particularly at specific times of day (TOD) when the NiR/NR activity ratio is low. We hypothesized that accumulation of nitrite and PI can be alleviated by altering nitrate nutrition at specific times of day and the use of an air temperature differential. The tomato cultivars ‘Micro Tom’ (PI-tolerant) and ‘Basket Vee’ (PI-susceptible) were grown under various photoperiod regimes to determine: (1) if a positive correlation exists between PI and nitrite accumulation as determined by visual assessment, and chlorophyll and nitrite quantification; (2) if 24 h light affects the diel pattern of nitrate uptake in a way that favours PI through measurements of nitrate depletion; and (3) if PI can be alleviated by altering nitrate nutrition at two specific TOD when tomato is susceptible to nitrite accumulation. A positive correlation was found between nitrite accumulation and PI. Nitrate uptake experiments showed that the nitrate uptake rate per se is not responsible for PI in tomato, but maintenance of circadian nitrate uptake patterns even in 24 h light in combination with a loss of the circadian patterns for NR and NiR activities could contribute to PI. Nitrite accumulation and PI was decreased by utilizing a nutrient solution containing 25% total nitrogen at two specific 4 h periods in the day when tomato is susceptible to nitrite accumulation. We call this new technique TOD fertigation. Time-of-day fertigation in combination with a 6 oC temperature differential further reduced nitrite accumulation and PI. These findings showed the response of greenhouse tomatoes to supplemental lighting and the potential for increasing the photoperiod threshold for PI. / The Mexican Council for Science and Technology (CONACYT); The Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)
5

Papel da glutamina na regulação do influxo de nitrato em raízes de feijão-caupí expostas à salinidade / Role of glutamine in the regulation of nitrate influx in cowpea roots exposed to salinity

Silva, Petterson Costa Conceição January 2015 (has links)
SILVA, Petterson Costa Conceição. Papel da glutamina na regulação do influxo de nitrato em raízes de feijão-caupí expostas à salinidade. 2015. 91 f. Dissertação (Mestrado em solos e nutrição de plantas)-Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Vitor Campos (vitband@gmail.com) on 2016-08-31T21:37:40Z No. of bitstreams: 1 2015_dissertacao_pccsilva.pdf: 2241402 bytes, checksum: 90dfc5f9012e295047f9193c64411616 (MD5) / Approved for entry into archive by Jairo Viana (jairo@ufc.br) on 2016-08-31T22:51:31Z (GMT) No. of bitstreams: 1 2015_dissertacao_pccsilva.pdf: 2241402 bytes, checksum: 90dfc5f9012e295047f9193c64411616 (MD5) / Made available in DSpace on 2016-08-31T22:51:31Z (GMT). No. of bitstreams: 1 2015_dissertacao_pccsilva.pdf: 2241402 bytes, checksum: 90dfc5f9012e295047f9193c64411616 (MD5) Previous issue date: 2015 / There are many studies showing that the salinity may directly affect the nitrate uptake, from their osmotic effect, nature of the salt and its ionic composition. However, little is known about the mechanisms related to the salt ability to inhibit the nitrate acquisition indirectly. This study was carried with aim to induce inhibition of NO3- influx in cowpea roots of indirect form triggered by a negative feedback mechanism, caused by the increase in the pool of free amino acids in the tissue, induced by salt stress.For this, were done three isolated studies and continuous.The exogenous glutamine application promoted an increase in the free amino acids content.The presence of glutamine decreased significantly the nitrate acquisition.The free ammonium can also be listed as a key-compound in the role of nitrate influx regulation, since use of the MSX (Methionine sulfoximine) promoted the increase of NH4+ content and also reduced nitrate influx, but, in a lesser degree when compared to treatment with AZA (Azaserine). Salt stress caused a reduction in NO3- influx by decrease in the growth of plants induced by salt. The data indicated which this reduction in the influx is triggered by increase of amino acids content, mainly the glutamine, that is main likely compound to act as signal in the N-feedback regulation. / Existem muitos estudos mostrando que a salinidade pode afetar a absorção de nitrato de forma direta, a partir do seu efeito osmótico, da natureza do sal e de sua composição iônica. Entretanto, pouco se sabe sobre os mecanismos relacionados com a capacidade do sal em inibir a aquisição de nitrato de forma indireta. O presente estudo teve como objetivo induzir a inibição do influxo de NO3- em raízes de feijão-caupí de forma indireta desencadeada por um mecanismo de feedback negativo, provocado pelo aumento no pool de aminoácidos livres no tecido, induzido por estresse salino. Para isso, foram realizados três estudos isolados e contínuos. A aplicação de glutamina exógena promoveu um aumento no conteúdo de aminoácidos livres. A presença de glutamina reduziu significativamente a aquisição de nitrato. O amônio livre também pode ser listado como um composto-chave no papel da regulação do influxo de nitrato, pois a utilização do MSO (Metionina sulfoximina) promoveu o aumento do conteúdo de NH4+ e também reduziu o influxo de nitrato, porém em menor grau quando comparado ao o tratamento com AZA (Azaserina). O estresse salino causou uma redução no influxo de NO3-, pela diminuição no crescimento das plantas induzida pelo sal. Adicionalmente, estes dados indicaram que esta redução no influxo está ligada ao aumento do teor de aminoácidos, principalmente a glutamina, que é o principal componente para atuar como sinal na regulação por N-feedback.
6

Nitrogen transporters: comparative genomics, transport activity, and gene expression of NRTs and AMTs in Black Cottonwood (Populus trichocarpa)

Von Wittgenstein, Neil Joseph Jude Baron 18 April 2013 (has links)
Black Cottonwood (Populus trichocarpa) is a fast-growing, economically important tree species. P. trichocarpa was the first tree to have its genome fully sequenced and is considered the model organism for genomic research in trees. Of the macronutrients in plants, Nitrogen (N) is required in the greatest amounts and is generally the limiting nutrient in terrestrial ecosystems. Inorganic N-transport is performed by four families of transporter proteins, AMT1 and AMT2 for ammonium (NH4+) and NRT1 and NRT2 for nitrate (NO3-). I have created phylogenetic reconstructions of each of these transporter families in 22 members of Viridiplantae whose genomes have been fully sequenced. Based on these phylogenies, I have introduced a new classification system for the transporter families that better represents the evolutionary and functional relatedness of the proteins. These phylogenies were supplemented with topology predictions, subcellular localization predictions, and in silico expression profiling in order to suggest functional characterization of the groups. This facilitated candidate gene selection for NH4+ and NO3- uptake transporters from P. trichocarpa. Expression profiling was performed on two of these candidates. Results suggest that PtAMT1-1 may be a high-affinity, root-localized NH4+ transporter. In contrast, PtNRT2-6 is a high-affinity NO3- transporter localized to the dormant bud, but its physiological functions remain largely enigmatic. Flux profiles of NH4+, NO3-, and H+ in the first 1.4 cm of root tips of three-week-old P. trichocarpa seedlings and cuttings were measured using the Microelectrode Ion Flux mEasurement (MIFE) system to demonstrate the activity of AMTs and NRTs under nutrient-abundant and nutrient-deficient conditions. I found mainly N-efflux from roots of cuttings while seedling roots exhibited N-uptake. This is the first report of such a difference. This highlights an unexpected but clear physiological difference between seedling and cutting roots, which are frequently used in experimental setups. / Graduate / 0817 / 0369 / 0715 / neilvonw@gmail.com
7

Role of glutamine in the regulation of nitrate influx in cowpea roots exposed to salinity / Papel da glutamina na regulaÃÃo do influxo de nitrato em raÃzes de feijÃo-caupà expostas à salinidade

Petterson Costa ConceiÃÃo Silva 14 December 2015 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / There are many studies showing that the salinity may directly affect the nitrate uptake, from their osmotic effect, nature of the salt and its ionic composition. However, little is known about the mechanisms related to the salt ability to inhibit the nitrate acquisition indirectly. This study was carried with aim to induce inhibition of NO3- influx in cowpea roots of indirect form triggered by a negative feedback mechanism, caused by the increase in the pool of free amino acids in the tissue, induced by salt stress.For this, were done three isolated studies and continuous.The exogenous glutamine application promoted an increase in the free amino acids content.The presence of glutamine decreased significantly the nitrate acquisition.The free ammonium can also be listed as a key-compound in the role of nitrate influx regulation, since use of the MSX (Methionine sulfoximine) promoted the increase of NH4+ content and also reduced nitrate influx, but, in a lesser degree when compared to treatment with AZA (Azaserine). Salt stress caused a reduction in NO3- influx by decrease in the growth of plants induced by salt. The data indicated which this reduction in the influx is triggered by increase of amino acids content, mainly the glutamine, that is main likely compound to act as signal in the N-feedback regulation. / Existem muitos estudos mostrando que a salinidade pode afetar a absorÃÃo de nitrato de forma direta, a partir do seu efeito osmÃtico, da natureza do sal e de sua composiÃÃo iÃnica. Entretanto, pouco se sabe sobre os mecanismos relacionados com a capacidade do sal em inibir a aquisiÃÃo de nitrato de forma indireta. O presente estudo teve como objetivo induzir a inibiÃÃo do influxo de NO3- em raÃzes de feijÃo-caupà de forma indireta desencadeada por um mecanismo de feedback negativo, provocado pelo aumento no pool de aminoÃcidos livres no tecido, induzido por estresse salino. Para isso, foram realizados trÃs estudos isolados e contÃnuos. A aplicaÃÃo de glutamina exÃgena promoveu um aumento no conteÃdo de aminoÃcidos livres. A presenÃa de glutamina reduziu significativamente a aquisiÃÃo de nitrato. O amÃnio livre tambÃm pode ser listado como um composto-chave no papel da regulaÃÃo do influxo de nitrato, pois a utilizaÃÃo do MSO (Metionina sulfoximina) promoveu o aumento do conteÃdo de NH4+ e tambÃm reduziu o influxo de nitrato, porÃm em menor grau quando comparado ao o tratamento com AZA (Azaserina). O estresse salino causou uma reduÃÃo no influxo de NO3-, pela diminuiÃÃo no crescimento das plantas induzida pelo sal. Adicionalmente, estes dados indicaram que esta reduÃÃo no influxo està ligada ao aumento do teor de aminoÃcidos, principalmente a glutamina, que à o principal componente para atuar como sinal na regulaÃÃo por N-feedback.
8

Developing and optimizing processes for biological nitrogen removal from tannery wastewaters in Ethiopia

Leta, Seyoum January 2004 (has links)
In Ethiopia industrial effluents containing high contents of organic matter, nitrogen and heavy metals are discharged into inland surface waters with little or no pre-treatment. Significant pollution concerns related to these effluents include dissolved oxygen depletion, toxicity and eutrophication of the receiving waters. This has not only forced the government to formulate regulations and standards for discharge limits but also resulted in an increasing interest and development of methods and systems by which wastewater can be recycled and used sustainably. The need for technologies for environmentally friendly treatment of industrial wastes such as tannery wastewaters is therefore obvious. Biological processes are not only cost effective but also environmentally sound alternatives to the chemical treatment of tannery wastewaters. The aim of the research presented in this thesis was to develop and optimize processes for biological nitrogen removal from tannery wastewaters and to identify the most efficient denitrifying organisms in tannery wastewaters laden with toxic substances. A pilot plant consisting of a predenitrification anoxic system, aerated nitrification compartment and a sedimentation tank (clarifier) all arranged in series was developed and installed on the premises of Addis Ababa University, Ethiopia. In spite of high influent chromium and sulphide perturbations over the successive feeding phases, the performance of the pilot plant was encouraging. The overall removal efficiency of the pilot plant over the experimental feeding phases varied between 82-98% for total nitrogen, 95-98% for COD, 96-98% for BOD5, 46-95% for ammonia nitrogen, 95-99% for sulphide and 93-99% for trivalent Chromium. Six isolates from over 1000 pure cultures were identified as the most efficient denitrifying bacteria. From both cellular fatty acid profiles and 16S rRNA gene sequencing, the six selected strains were phylogenetically identified as Brachymonas denitrificans in the β-subdivision of the Proteobacteria. All the six strains contain cd1-type nitrite reductase. The efficient isolates characterized in this study are of great value because of their excellent denitrifying properties and high tolerance to the concentrations of toxic compounds prevailing in tannery wastewaters. Bio-augmentation of the pilot plant with this bacterium showed a clear correlation between in situ denitrifying activities measured by nitrate uptake rate, population dynamics of the introduced B.denitrificans monitored by fluorescent in situ hybridization and the pilot plant performance, suggesting that the strategy of introducing this species for enhancing process performance has potential applications. Moreover, the nitrate-reducing, sulphur-oxidizing bacteria (NR-SOB) were also found in the pilot plant in abundance with steady sulphide removal efficiency during the study period. This could provide opportunities for the application of biologically mediated simultaneous removal of sulphide and nitrogen from tannery effluents. In addition to enriching high consortia of denitrifiers in the anoxic system to attain high denitrification efficiency and also improving the overall nitrification efficiency of the system, the predenitrification-nitrification pilot process plant stimulated the activity of indigenous NR-SOB to simultaneously remove sulphide from the system. Thus, the pilot plant was found to be operationally efficient for the removal of nitrogen, organic matter and other pollutants from tannery wastewaters. Keywords: Biological nitrogen and sulphide removal, denitrifying bacteria, nitrate-reducing, sulphur-oxidizing bacteria, nitrate uptake rate, fluorescent in situ hybridization, pollution, tannery effluents.
9

Developing and optimizing processes for biological nitrogen removal from tannery wastewaters in Ethiopia

Leta, Seyoum January 2004 (has links)
<p>In Ethiopia industrial effluents containing high contents of organic matter, nitrogen and heavy metals are discharged into inland surface waters with little or no pre-treatment. Significant pollution concerns related to these effluents include dissolved oxygen depletion, toxicity and eutrophication of the receiving waters. This has not only forced the government to formulate regulations and standards for discharge limits but also resulted in an increasing interest and development of methods and systems by which wastewater can be recycled and used sustainably. The need for technologies for environmentally friendly treatment of industrial wastes such as tannery wastewaters is therefore obvious. Biological processes are not only cost effective but also environmentally sound alternatives to the chemical treatment of tannery wastewaters.</p><p>The aim of the research presented in this thesis was to develop and optimize processes for biological nitrogen removal from tannery wastewaters and to identify the most efficient denitrifying organisms in tannery wastewaters laden with toxic substances. A pilot plant consisting of a predenitrification anoxic system, aerated nitrification compartment and a sedimentation tank (clarifier) all arranged in series was developed and installed on the premises of Addis Ababa University, Ethiopia. In spite of high influent chromium and sulphide perturbations over the successive feeding phases, the performance of the pilot plant was encouraging. The overall removal efficiency of the pilot plant over the experimental feeding phases varied between 82-98% for total nitrogen, 95-98% for COD, 96-98% for BOD5, 46-95% for ammonia nitrogen, 95-99% for sulphide and 93-99% for trivalent Chromium. Six isolates from over 1000 pure cultures were identified as the most efficient denitrifying bacteria. From both cellular fatty acid profiles and 16S rRNA gene sequencing, the six selected strains were phylogenetically identified as Brachymonas denitrificans in the β-subdivision of the Proteobacteria. All the six strains contain cd1-type nitrite reductase. The efficient isolates characterized in this study are of great value because of their excellent denitrifying properties and high tolerance to the concentrations of toxic compounds prevailing in tannery wastewaters. Bio-augmentation of the pilot plant with this bacterium showed a clear correlation between in situ denitrifying activities measured by nitrate uptake rate, population dynamics of the introduced B.denitrificans monitored by fluorescent in situ hybridization and the pilot plant performance, suggesting that the strategy of introducing this species for enhancing process performance has potential applications.</p><p>Moreover, the nitrate-reducing, sulphur-oxidizing bacteria (NR-SOB) were also found in the pilot plant in abundance with steady sulphide removal efficiency during the study period. This could provide opportunities for the application of biologically mediated simultaneous removal of sulphide and nitrogen from tannery effluents. In addition to enriching high consortia of denitrifiers in the anoxic system to attain high denitrification efficiency and also improving the overall nitrification efficiency of the system, the predenitrification-nitrification pilot process plant stimulated the activity of indigenous NR-SOB to simultaneously remove sulphide from the system. Thus, the pilot plant was found to be operationally efficient for the removal of nitrogen, organic matter and other pollutants from tannery wastewaters.</p><p><b>Keywords:</b> Biological nitrogen and sulphide removal, denitrifying bacteria, nitrate-reducing, sulphur-oxidizing bacteria, nitrate uptake rate, fluorescent in situ hybridization, pollution, tannery effluents.</p>
10

L'influence de la méiofaune sur le fonctionnement du biofilm lotique en relation avec la qualité de l'eau / The influence of meiofauna on river biofilm functioning in relation to water quality

Liu, Yang 19 November 2015 (has links)
Le rôle de la méiofaune sur le fonctionnement des biofilms lotiques a été examiné par l'étude de son effet potentiel sur la capacité de consommation de l'azote des biofilms, au cours de quatre expérimentations. Les deux premières (Chapitres 2 et 3) concernent les biofilms épilithiques (phototrophes) tandis que les deux autres ont porté sur les biofilms (hétérotrophes) de la zone hyporhéique. Les biofilms sont soumis (1) à différents niveaux de densités (méiofaune) et à un enrichissement en nutriments ou (2) à différents niveaux de diversité (biofilm/méiofaune/macrofaune). Une partie des microcosmes présentant chaque niveau de diversité a été exposée à l'effet d'un herbicide, le diuron. Dans l'ensemble, la méiofaune associée aux biofilms des microcosmes était largement dominée par les rotifères. Les résultats basés sur les biofilms phototrophes montrent que les rotifères peuvent répondre à court terme, à un enrichissement en N-NO3 par une augmentation significative de leur densité et biomasse. De plus, le taux de consommation de N-NO3 est apparu significativement plus élevé dans les microcosmes dont les densités de méiofaune étaient les plus élevées. Cet effet positif de la méiofaune sur la consommation de N- NO3 par les biofilms a été retrouvé dans l'étude basée sur le biofilm hyporhéique pour les microcosmes non soumis aux effets du diuron. Dans l'ensemble, ce travail met donc en évidence le rôle significatif que peut avoir la méiofaune dans les processus de consommation de l'azote par les biofilms lotiques. De plus, les résultats suggèrent fortement que les invertébrés interagissent avec les micro-organismes impliqués dans les processus de réduction des concentrations en azote, dans le biofilm phototrophe comme dans le biofilm hyporhéique. Enfin, l'exposition à l'herbicide a engendré une modification significative du taux de consommation de N-NO3 dans les microcosmes hyporhéiques. Cependant, la comparaison du taux de consommation moyen de N-NO3 entre les traitements exposés à l'herbicide et ceux non exposés, a montré que la présence des invertébrés (méiofaune + macrobenthos) a significativement réduit l'effet du diuron sur ces processus. Cette étude met en exergue le rôle potentiellement important des interactions micro- organismes - invertébrés dans (1) le cycle de l'azote des biofilms et donc, dans les fonctions relatives à leur contribution aux processus " d'auto-épuration " des cours d'eau, et (2), dans la capacité de résistance des écosystèmes hyporhéiques face aux perturbations chimiques. / The role of meiofauna on the functioning of riverine biofilms was examined by studying their potential effect on nitrogen consumption capacity of biofilms in four experiments (Chapters 2 and 3: epilithic phototrophic biofilms; Chapters 4 and 5: heterotrophic biofilms of hyporheic zone). Biofilms are subjected to (1) different levels of densities (meiofauna) and nutrient enrichment or (2) different levels of diversity (biofilm/meiofauna/macrofauna). A part of the microcosms of each level of diversity was exposed to the effect of an herbicide, diuron. Overall, biofilm-associated meiofauna in microcosms was dominated by rotifers. Results in phototrophic biofilms showed that the response of rotifers to short-term nutrient enrichment was significant increases in their density and biomass. In addition, N-NO3 uptake rates appeared significantly higher in microcosms with highest meiofauna densities. This positive effect of meiofauna on biofilm N-NO3 uptake was also found in hyporheic biofilm microcosms, but not under the effect of diuron. Therefore, this thesis highlights that meiofauna can have a significant role in nitrogen consumption processes by lotic biofilms. In addition, the results strongly suggest that invertebrates interact with microorganisms involved in the reduction processes of nitrogen concentrations in the phototrophic biofilm as well as the hyporheic biofilm. Finally, the herbicide exposure resulted in a significant modification of N-NO3 uptake rate in hyporheic microcosms. However, the comparison of the average N- NO3 uptake rate between treatments exposed to herbicide and those unexposed, showed that the presence of invertebrates (meiofauna + macrofauna) significantly reduced the effect of diuron on these processes. This study highlights the potentially important role of microorganism-invertebrate interactions (1) in the nitrogen cycle of biofilms and thus functions related to their contribution to the "self-purification" process in streams, and (2) in resilient capacity of the hyporheic ecosystem to chemical perturbations.

Page generated in 0.0626 seconds