Spelling suggestions: "subject:"fitration"" "subject:"flitration""
21 |
Nitration of 1-keto-1,2,3,4-tetrahydrophenanthrene [I.] II. Reduction of [alpha], [beta]-unsaturated ketones by lithium-ammonia solutions /Jellinek, Joseph Stephan. January 1955 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1955. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves [153-157]).
|
22 |
Funktionelle Charakterisierung von SLAC1-homologen Anionenkanälen aus Arabidopsis thaliana / Functional characterization of SLAC1-homologous anion channels from Arabidopsis thalianaMaierhofer, Tobias January 2012 (has links) (PDF)
S-Typ (slow)-Anionenkanäle vermitteln in Schließzellen den Efflux von Chlorid und Nitrat, welcher letztendlich zum Schließen der Stomata, z.B. als Antwort auf Trockenstress, führt. Dabei kommt dem Phytohormon Abscisinsäure (ABA) eine zentrale Rolle zu. Es wird als Antwort auf Trockenheit synthetisiert und vermittelt über eine schnelle ABA-Signaltransduktionskette die Aktivierung von S-typ Anionenkanälen. SLAC1 war die erste Komponente eines S-Typ-Anionenkanals, die in Schließzellen identifiziert wurde. Durch die Expression in Xenopus Oozyten, konnte SLAC1 als S-Typ-Anionenkanal funktionell charakterisiert werden und seine Regulation über Kinasen (OST1, CPK21/23) und Phosphatasen (ABI1, ABI2) beschrieben werden. Mit diesen Untersuchungen gelang ein entscheidender Durchbruch bei der Entschlüsselung von Netzwerken, welche den Anionentransport in Schließzellen als Antwort auf Trockenstress regulieren. Im Laufe dieser Arbeit konnte in Schließzellen von Arabidopsis auch die Expression des SLAC1 Homolog 3 (SLAH3) nachgewiesen werden. Die Koexpression von SLAH3 mit der Ca2+-abhängigen Proteinkinase CPK21 in Xenopus Oozyten führte zu Nitrat-induzierten Anionenströmen. Dabei wurde die Aktivität dieses S-Typ-Anionenkanals, sowohl durch Phosphorylierung, als auch durch Kalzium und Nitrat gesteuert. Ähnlich wie bei der Regulation von SLAC1 konnte die Aktivität von SLAH3 durch die Proteinphosphatase ABI1, aus der Familie der PP2Cs, blockiert werden. Diese Eigenschaft von ABI1 passt sehr gut zur bekannten Rolle dieser Phosphatase in Schließzellen: ABI1 ist ein negativer Regulator der ABA-Signalkaskade und wird durch ABA inhibiert. Unsere biophysikalischen Analysen führten schließlich zur Rekonstitution des schnellen ABA-Signaltransduktionsweges. Die Bindung von ABA an den Komplex aus ABA-Rezeptor (RCAR/PYL/PYR) und ABI1 bewirkt die Inaktivierung von ABI1 und somit die Aktivierung von CPK21. Für deren volle Aktivität ist eine ABA-abhängige Erhöhung der zytosolischen Ca2+-Konzentration notwendig. Die aktivierte Kinase CPK21 ist schließlich in der Lage, den Anionenkanal SLAH3 zu phosphorylieren und in der Anwesenheit von Nitrat zu aktivieren. Somit liefert die Identifizierung und Charakterisierung von SLAH3, als den Nitrat-, Kalzium- und ABA-sensitiven Anionenkanal in Schließzellen, Einblicke in die Beziehung zwischen der Reaktion dieses Zelltyps auf Trockenstress, der Funktion von Nitrat als Signalmolekül und dem Nitratmetabolismus. Für die meisten höheren Pflanzen stellt Nitrat die wichtigste Stickstoffquelle dar. Die Nitrataufnahme über die Wurzel repräsentiert daher den entscheidenden Schritt für den Stickstoff-Metabolismus. Ausgehend von den Zellen des Wurzelkortex muss das Nitrat für den Langstreckentransport in die oberen Pflanzenorgane, in die Xylemgefäße der Stele eingebracht werden. Die Identifikation von Proteinen und Genen, die für den Nitrattransport verantwortlich sind, ist für das Verständnis der Nitrataufnahme und -verteilung in der Pflanze eine Grundvoraussetzung. Dabei scheinen Protonen-gekoppelte Transporter der NRT1-, bzw. NRT2-Klasse, die Verschiebung von Nitrat aus dem Boden in die Wurzeln zu bewerkstelligen. Aus der Endodermis, bzw. den Xylem-Parenchymzellen muss Nitrat anschließend in das extrazelluläre Medium der Xylemgefäße freigegeben werden, um über den Transpirationssog in den Spross zu gelangen. Auch am Transport dieses Anions in das Xylem ist mit NRT1.5 ein Nitrattransporter der NRT1-Klasse beteiligt, jedoch ergaben Experimente an NRT1.5-Verlustmutanten, dass weitere Transportmechanismen für den Efflux von Nitrat in das Xylem existieren müssen. Im Rahmen dieser Doktorarbeit konnte das SLAC1-Homolog 2 (SLAH2) funktionell in Xenopus Oozyten exprimiert werden. Mit Hilfe der BIFC-Methode wurde gezeigt, dass dabei die Interaktion mit der Ca2+-abhängigen Proteinkinase CPK21 essentiell ist. Elektrophysiologische Experimente verdeutlichten, dass SLAH2 einen Nitrat-selektiven S-Typ-Anionenkanal repräsentiert, dessen Aktivität gleichzeitig durch die Anwesenheit eben dieses Anions im externen Medium reguliert wird. Durch die Promoter:GUS-Technik gelang es, die Lokalisation von SLAH2 exklusiv in den Zellen der Wurzelstele von Arabidopsis nachzuweisen. Aufgrund des stark negativen Membranpotentials pflanzlicher Zellen und der vorliegenden Anionengradienten, dürften Anionenkanäle in erster Linie den Ausstrom von Anionen vermitteln. Da in Nitrat-Aufnahme-Experimenten an SLAH2-Verlustmutanten, im Vergleich zu Wildtyp-Pflanzen, ein geringerer Nitratgehalt im Spross, dagegen eine höhere Konzentration dieses Anions in den Wurzeln zu detektieren war, scheint der S-Typ-Anionenkanal SLAH2 am Transport von Nitrat aus den Wurzeln in die Blätter beteiligt zu sein. Dabei könnte er entweder direkt an der Beladung des Xylems mit Nitrat mitwirken, oder diese durch seine potentielle Funktion als Nitratsensor regulieren. / S-type (slow)-anion channels in guard cells mediate the efflux of chloride and nitrate which finally leads to the closing of stomata, e.g. in response to drought stress. Hereby the phytohormone abscisic acid (ABA) plays a central role. It is synthesized in response to drought and mediates the activation of S-type anion channels via a fast ABA signal transduction pathway. SLAC1 was the first component of S-type anion channels that was identified in guard cells. Following expression in Xenopus oocytes, SLAC1 could be functionally characterized as a S-type anion channel and its regulation via kinases (OST1, CPK21/23) and phosphatases (ABI1, ABI2) could be demonstrated. These studies represented a crucial breakthrough in decoding networks that regulate the anion transport in guard cells in response to drought stress. In the course of this work the expression of the SLAC1 homolog 3 (SLAH3) was detected in guard cells of Arabidopsis, too. In line with the phosphorylation-dependent activation of SLAC1, coexpression of SLAH3 with the Ca2+-dependent protein kinase CPK21 in Xenopus oocytes resulted in nitrate-induced anion currents. Thus the activity of this S-type anion channel was controlled by phosphorylation as well as via calcium and nitrate. Similar to the regulation of the activity of SLAC1, SLAH3 could be blocked by the protein phosphatase ABI1, a member of the PP2C family. This property of ABI1 is well in line with its known physiological role in guard cells: ABI1 represents a negative regulator of ABA signaling and is inhibited by ABA. Our biophysical and biochemical analyses resulted in the reconstitution of the fast ABA signal transduction pathway: Binding of ABA to the complex of the ABA receptor (RCAR/PYL/PYR) and ABI1 leads to the inactivation of ABI1 and thus to the activation of CPK21. For its full activity an ABA-dependent increase in the cytosolic Ca2+ concentration is necessary. The activated kinase CPK21 is finally able to phosphorylate and activate the anion channel SLAH3 in the presence of nitrate. Thus, the identification and characterization of SLAH3 as the nitrate, calcium and ABA sensitive anion channel in guard cells, provides insights into the relationship between the reaction of this cell type to drought stress, the function of nitrate as a signaling molecule and the nitrate metabolism. Nitrate represents the most important nitrogen source for the majority of higher plants. Nitrate uptake by roots is therefore a decisive step in the nitrogen metabolism of plants. Starting from the cells of the root cortex nitrate is loaded into the xylem vessels of the stele for long-distance transport into the aerial plant organs. The identification of proteins and genes that are responsible for the transport of nitrate is a basic requirement for the understanding of nitrate uptake and distribution in the plant. Thereby proton coupled transporters of the NRT1 and NRT2 class seem to be responsible for the translocation of nitrate from the soil to the root. From the endoderm and the xylem parenchyma cells nitrate is then released into the extracellular medium of the xylem vessels to enter the transpiration stream to the shoot. NRT1.5, a transporter of the NRT1 family, was shown to be involved in this process. However, experiments on NRT1.5-deficient mutants showed that additional transport mechanisms for the efflux of nitrate into the xylem must exist. In the course of this dissertation the SLAC1 homolog 2 (SLAH2) was functionally expressed in Xenopus oocytes. With the help of the BIFC method it could be shown that hereby the interaction with the Ca2+-dependent protein kinase CPK21 is essential. Electrophysiological experiments demonstrated that SLAH2 represents a nitrate-selective S-type anion channel whose activity is regulated by the presence of this anion in the external medium. The localization of SLAH2 exclusively in the cells of the Arabidopsis root stele was detected via the promoter:GUS technique. Due to the hyperpolarized membrane potential of plant cells and the outward-directed anion gradients, it is likely that anion channels primarily mediate the efflux of anions. Nitrate uptake experiments on SLAH2 loss of function mutants revealed a lower nitrate content in the shoot compared to wild-type plants, whereas a higher concentration of this anion was detected in the roots. This indicates that the S-type anion channel SLAH2 is involved in the transport of nitrate from the roots into the leaves. Thereby SLAH2 could either be directly responsible for the xylem loading with nitrate or it could regulate this process by its potential function as a nitrate sensor.
|
23 |
Protein tyrosine nitration in mast cellsSekar, Yokananth 06 1900 (has links)
Nitric oxide (NO) is a short-lived free radical that plays a critical role in the regulation of cellular signalling. Mast cell (MC) derived NO and exogenous NO regulate MC activities including the inhibition of MC degranulation. At a molecular level the intermediate metabolites of NO modify protein structure and function through several mechanisms including protein tyrosine nitration. To begin to elucidate the molecular mechanisms underlying the effects of NO in MC, we investigated protein tyrosine nitration in human mast cell lines HMC-1 and LAD2 treated with the NO donor S-nitrosoglutathione (SNOG). Using two dimensional gel western blot analysis with an anti-nitrotyrosine antibody together with mass spectroscopy we identified aldolase A, an enzyme of the glycolytic pathway, as a target for tyrosine nitration in MC.
S-nitrosoglutathione treatment also reduced the Vmax of aldolase in HMC-1 and LAD2. Nuclear magnetic resonance (NMR) analysis showed that despite these changes in activity of a critical enzyme in glycolysis, there was no significant change in total cellular ATP content, although the AMP/ATP ratio was altered. Elevated levels of lactate and pyruvate suggested that SNOG treatment enhanced glycolysis. Reduced aldolase activity was associated with increased intracellular levels of its substrate, fructose-1,6-bisphosphate (FBP). Interestingly, FBP inhibited IgE-mediated MC degranulation and intracellular Ca2+ levels in LAD2 cells.
In addition to aldolase, 15-hydroxy prostaglandin dehydrogenase (PGDH), a critical enzyme in the metabolism of PGE2, was identified as a prominent target for tyrosine nitration in LAD2 cells. Thus for the first time we report evidence of protein tyrosine nitration in human MC lines and identify aldolase A as a prominent target in HMC-1 and LAD2; and PGDH in LAD2 cells. The post translational nitration of aldolase A and PGDH may be important pathways that regulate MC phenotype and function. / Experimental Medicine
|
24 |
Protein tyrosine nitration in mast cellsSekar, Yokananth Unknown Date
No description available.
|
25 |
Studies of novel nitro-substituted nitrogen heterocyclic compoundsPhilbin, Simon Patrick January 2001 (has links)
The novel candidate high energy insensitive explosive; 2,5-diamino-3,6-dinitropyrazine (ANPZ-i) has been prepared in acceptable overall yield. ANPZ-i was synthesised by the nitration of 2,5-diethoxypyrazine using nitronium tetrafluoroborate (NO2+BF4-) in sulfolane and the subsequent amination of 2,5-diethoxy-3,6-dinitropyrazine, under autoclave conditions. Oxidation studies towards the dioxide derivative of ANPZ-i, 2,5-diamino-3,6-dinitropyrazine-1,4-dioxide (PZDO), were unsuccessful. The synthesis of existing high explosives; 2,6-diamino-3,5-dintropyrazine (ANPZ) and 2,6-diamino-3,5-dinitropyrazine-1-oxide (PZO) has been scaled up to produce approximately 25 g batches of material. A number of novel nitrations using NO2+BF4- have been carried out on a range of chloro-, methyl- and hydroxy-functionalised quinoxalines and quinazolines. A range of novel functionalisations have also been carried out on the platform molecule; 2,4-diamino-6,8-dinitroquinazoline giving rise to 2,4-diamino-6,8-dinitroquinazoline-1,3-dioxide (di-N-oxidation product), 2,4,7-triamino-6,8-dinitroquinazoline (monoamination product) and 2,4,6,8-tetra-aminoquinazoline (dihydrogenation product). Detonics molecular modelling was carried out on the following target molecules: 2,5-diamino-3,6-dinitropyrazine-1,4-dioxide (PZDO), 2,5,8-triamino-3,6,7-trinitroquinoxaline-1-oxide and 2,5,7-triamino-4,6,8-trinitroquinazoline-1-oxide. The detonation velocity of the new explosive molecule; 2,5-diamino-3,6-dinitropyrazine (ANPZ-i) was calculated and it was found to be a similar value to that obtained experimentally for the existing high explosive RDX. Calculation by molecular modelling of the steric energies of ANPZ, PZO, ANPZ-i and PZDO gave a quantitative assessment of the difficulty in oxidising ANPZ-i to give PZDO. Extensive analysis of carbon-13 NMR spectroscopy shift values was carried out for approximately twenty nitrogen heterocyclic compounds. Comparison of shift values indicated consistency in the interpretations. On-line literature searches have shown that the following compounds prepared in this project are new: 2,3,6-trichloro-5-nitroquinoxaline, 2,3-dimethoxy-6,7-dinitroquinoxaline, 2,3,6-trichloroquinoxaline-1-oxide, 2,4-diamino-6,8-dinitroquinazoline-1,3-dioxide, 2,4,7-triamino-6,8-dinitroquinazoline and 2,5-diamino-3,6-dinitropyrazine (ANPZ-i). Furthermore, new synthetic routes have been used in the preparation of the following compounds: 2,3-dichloro-5-nitroquinoxaline, 2,3,6,7-tetrachloro-5-nitroquinoxaline, 2-hydroxy-6-nitroquinoxaline, 2-hydroxy-3-methyl-6-nitroquinoxaline and 2,5-diethoxy-3,6-dinitropyrazine.
|
26 |
Acetyl-nitrate nitration of toluene by zeolite catalysts and methods of oxidation of graphite nanofibersJean-Gilles, Riffard P. January 2007 (has links)
Thesis (M.S.)--Villanova University, 2007. / Chemistry Dept. Includes bibliographical references.
|
27 |
The role of dietary phenolic compounds in the detoxification of reactive nitrogen species /Morton, Lincoln William. January 2003 (has links)
Thesis (Ph.D.)--University of Western Australia, 2003.
|
28 |
Studies on oxidative aromatic substitutionRodriguez Medina, Inmaculada Concepcion January 2001 (has links)
No description available.
|
29 |
Investigation of Catalysis of Nitration by Cytochrome P450sJohnson, Lannika 01 January 2022 (has links)
TxtE is a protein related to cytochrome P450 enzymes, which catalyze a number of reactions that typically involve oxygen and not nitrogen. It has been discovered that TxtE can nitrate tryptophan through an unusual reaction in which it uses nitric oxide (NO) as a nitrogen donor to install the nitro group despite NO typically being considered toxic to bacteria. This project will determine if all cytochromes P450 can catalyze nitration as long as they are given NO. This will have an impact on understanding drug delivery and metabolism for which nitration is important.
|
30 |
Nitrations of viscose rayonAllen, Ralph Wilson January 1942 (has links)
An examination of the experimental data will give the following generalizations.
The stability tests indicate that the same type of acid hydrolysis of the glucose linkages occurs giving unstable, short-chain nitrates whenever rapid, harsh esterification is undertaken. This instability naturally prohibits use of such products as smokeless powder.
From the results of this investigation, it seems that any continuous type of acidic nitration of viscose rayon for use in powder bags or guncotton would be highly impractical. / M.S.
|
Page generated in 0.094 seconds