• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Kinetic Parameterization Methods for Nitrifying Bacteria using Respirometry

Malin, Kyle George 19 January 2022 (has links)
Understanding how nitrifiers react when exposed to low DO conditions could provide a greater understanding of low DO operations in full-scale biological wastewater treatment. Previous methods to observe nitrifier oxygen kinetics do exist in literature, however they are inefficient and labor intensive. Other more efficient methods require the use of selective inhibitors, which alter the characteristics of the biomass. This study developed a time and labor efficient respirometric method to distinctly measure oxygen half-saturation coefficients for both ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) without the use of selective inhibitors. By eliminating the use of inhibitory substances, representative biomass characteristics were maintained throughout the tests. The developed method, called the declining DO method, consisted of using a high-speed dissolved oxygen (DO) probe to measure relative oxygen uptake rates (OUR) within a batch reactor when varying substrates (ammonia and nitrite) were present in excess within the system. A forward model was developed based on Monod kinetics to simultaneously fit Monod curves to the experimental OUR data. These curves were fit by solving for optimum oxygen kinetic parameters representing endogenous respiration, NOB, and AOB. An inverse model using Markov chain Monte Carlo analysis was applied to the results found in the forward model to provide statistical validation of the proposed respirometric method. A separate method, called the substrate utilization rate test, was conducted in parallel with the declining DO tests to compare and verify oxygen half-saturation coefficient results. Parallel tests were conducted using biomass samples from three different Hampton Roads Sanitation District (HRSD) full-scale facilities. Operating conditions between the three HRSD facilities were considered when performing parallel testing, including averages for DO, solids retention time (SRT), and floc size. Average floc size was found to have a significant effect on the observed oxygen half-saturation values. Observed trends for the KO values estimated using the two methods remained consistent throughout all tests, where KO,NOB was always lower than KO,AOB. The comparison of the two methods highlighted some faults associated with the substrate utilization rate test, which is commonly used in literature to observe nitrifier oxygen kinetics. The declining DO method appeared to be more resistant to potential experimental error and required less than half the time compared to the substrate utilization rate test. The development of the declining DO method without the use of selective inhibitors provided a more time and labor efficient technique for estimating apparent KO values for NOB and AOB without sacrificing biomass characteristics representative of the full-scale treatment process. Biomass samples collected from variable treatment process conditions yielded consistent parallel test results, providing further evidence that the proposed declining DO method can be a robust and reliable technique for distinctly measuring apparent oxygen half-saturation values for NOB and AOB. / Master of Science / Wastewater treatment operations utilizing biological nitrogen removal (BNR) require a continuous supply of oxygen for aerobic processes. Energy costs associated with aeration generally accounts for at least 50% of the total energy consumption at conventional activated sludge wastewater treatment facilities. Operating aerobic zones at low average dissolved oxygen (DO) concentrations could be an effective way to significantly reduce aeration costs as well as material costs associated with BNR treatment processes. This study developed a method to measure oxygen kinetics for the two groups of autotrophic bacteria responsible for performing nitrogen removal. The method consisted of measuring relative oxygen uptake rates (OUR) within a batch reactor when varying substrates were available. This method is unique from previously developed techniques in that the use of selective inhibitors was not included, meaning the characteristics of the wastewater were largely unchanged and therefore better represent biomass conditions within the full-scale process. The results of the proposed method were verified using an alternate method for estimating oxygen kinetics. These two methods were conducted in parallel using biomass samples from several full-scale Hampton Roads Sanitation District wastewater treatment facilities utilizing a variety of process designs and operating conditions. Consistent results obtained between the two methods suggested the proposed method is an effective technique for distinctly measuring nitrifier oxygen kinetics.
2

Mainstream Deammonification process monitoring by bacterial activity tests

Carranza Muñoz, Andrea January 2020 (has links)
Deammonification is a widely used technology for side stream treatment with rich ammonium streams at relatively high temperatures, such as, the reject water coming from dewatering units in treatment of digested sludge and industrial wastewaters. The deammonification process has lower operational costs than conventional systems, consumes less energy, enables the increase of biogas production and it is easy to implement. However, this technology has not yet been applied in full- scale mainstream treatment due to its restrictions in coping with high C/N ratios, low temperatures, and the need for post-treatment processes. These conditions are allegedly negative to the growth and performance of anammox bacteria affecting the bacterial groups’ behavior in the process. This master thesis project aimed to evaluate the feasibility of using deammonification to remove nitrogen from mainstream wastewater, which was studied by monitoring the bacterial activity in a pilot scale reactor. The different bacterial groups involved (AOB, NOB, heterotrophs, and denitrifiers) were monitored by weekly measuring their activity in batch activity tests. The results allowed the evaluation of different operational scenarios and their impact by following up on the changes in the bacterial competition. The study was conducted for six months in a single-stage IFAS (integrated fixed-film activated sludge) pilot-scale reactor located in Stockholm and fed with pretreated (with a UASB) municipal wastewater. The different operational scenarios involved changes in temperature, aeration patterns, DO concentration, SRT, and HRT. The adjustment of these features was done in the interest of promoting AOB and anammox bacterial growth, leading to an improvement of the deammonification efficiency in future studies. However, the chosen operational conditions were to enhance bacterial competition and facilitate its visualization, not to maximize nitrogen removal. Thus, the most suitable scenario found during this study included DO concentration of 1.5 mg/L with 10 aeration-20 non-aeration pattern and ensured nitrogen removal rates within normal values while allowing the monitoring of all the bacterial groups. TN removal reached a value above 50% and NH4-N above 95%, whereas nitrogen Removal Rate (NRR) increased to 30g/N/m3-d and the system had an overall nitrogen removal efficiency of 75%. Nevertheless, it was proven that in the right environment, the necessary bacterial groups can be selectively accumulated and successfully perform deammonification and reduce nitrogen levels in mainstream wastewater. / Deammonifikation är en välanvänd teknik för rening av sidoströmmar med höga ammoniumkoncentrationer vid relativt hög temperatur, som till exempel rejektvatten från avvattning av rötslam eller industriellt avloppsvatten. Deammonifikationsprocessen har lägre driftkostnad än konventionella reningsprocesser, förbrukar mindre energi samt möjliggör högre biogasproduktion samtidigt som processen är enkel att implementera. Reningstekniken har dock ännu inte tillämpats i fullskala för rening av huvudströmmen på grund av den höga C/N-kvoten och de låga vattentemperaturerna i kommunalt avloppsvatten samt behovet av efterbehandling. Detta anses ha en negativ inverkan på anammoxbakteriernas tillväxthastighet och funktion vilket påverkar bakteriegruppens beteende i processen. Syftet med detta examensarbete var att utvärdera om det är praktiskt genomförbart att använda deammonifikation för att rena kväve från kommunalt avloppsvatten, vilket följdes upp genom att studera bakterieaktiviteten i en pilotskalereaktor. De involverade bakteriegrupperna (AOB, NOB, heterotrofer och denitrifierare) övervakades genom att mäta den mikrobiella aktiviteten varje vecka med hjälp av batch-tester. Resultaten användes till att utvärdera olika driftstrategier och deras effekt genom att följa förändringarna i mikrobiell aktivitet hos de konkurrerande bakteriegrupperna. Studien genomfördes i Stockholm under sex månader i en enstegs-IFAS-pilotskalereaktor (integrerad process med biofilm på fast bärarmaterial och aktivslam) som matades med kommunalt avloppsvatten som förbehandlats i en UASB-reaktor. De olika driftstrategierna omfattade olika temperaturer, luftningsstrategier, syrekoncentrationer, slamåldrar och hydrauliska uppehållstider. Syftet med driftstrategierna var att främja AOB- och anammoxbakteriers tillväxt för att i framtida studier kunna erhålla en förbättrad deammonifikationsprocess. Syftet i denna studie var dock i första hand att förbättra den bakteriella konkurrensen och göra den lättare att mäta, inte att uppnå bästa möjliga kväverening. Den driftstrategi som gav bäst resultat i denna studie innebar att hålla en syrehalt på 1,5 mg/l med 10 minuter luftning följt av 20 minuter utan luftning vilket säkerställde en normal kväveavskiljning och samtidigt möjliggjorde övervakning av samtliga fyra bakteriegrupper. Totalkväveavskiljningen var över 50 % och ammoniumavskiljningen över 95 % medan kvävereningsaktiviteten ökade till 30 g N/m3-d och systemet hade en övergripande effektivitet på 75 %. Studien visade att under rätt förutsättningar kan de nödvändiga bakteriegrupperna selekteras fram och deammonifikation av kommunalt avloppsvatten kan utföras på ett framgångsrikt sätt.
3

Evaluation of Nitration/Anammox process by bacterial activity tests.

Mika, Anna January 2015 (has links)
Partial Nitritation/Anammox process (deammonification process), by which occurs oxidation of ammonium to nitrogen gas by autotrophic bacteria in anaerobic conditions, considered to be cost-effective and environmentally friendly method of nitrogen removal. Present research work focuses on achieving a high nitrogen removal degree, thanks to Anammox bacteria, while providing the best performance of the ongoing process. Integrated fixed-film activated sludge (IFAS) reactor was supplied with the main stream of the wastewater after UASB reactor, characterized by low concentration of nitrogen and organic matter. The bacteria ability to accommodate, were tested in the biofilm and in the activated sludge, depending on the different stages in which the process were being conducted. Batch test, such as Specific Anammox Activity (SAA), Nitrate Uptake Rate (NUR) and Oxygen Uptake Rate (OUR), were used for the evaluation of activity of various groups of bacteria. On the basis of laboratory analysis verified the values obtained from the batch tests. It was determined that a high degree of nitrogen removal (92% of NH4-N) was achieved thanks to the dominant activity of the Anammox bacteria, with low participation of other groups of bacteria. It was also proved, that Anammox bacteria activity were overwhelming in the biofilm. Dominant role of Ammonium Oxidizing Bacteria (AOB) was associated with high activity of Anammox bacteria, which together satisfyingly out-competed Nitrite Oxidizing Bacteria (NOB) and heterotrophic bacteria. It has been shown that Anammox bacteria quickly adapt to the new conditions and they are able to assume a dominant role, even in the case of inoculation of the reactor with the sludge from SBR. This allows conclude, that in the case of operational problems, the reactor can be supplied from another source, in order not to inhibit the process.

Page generated in 0.1112 seconds