• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 11
  • 8
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Preparation of nitrocyclopropanes using ylides /

Asunskis, John Peter January 1970 (has links)
No description available.
32

Iron-catalysed hydride and radical transfer reactions

Zhu, Kailong January 2017 (has links)
Iron-catalysed carbonyl reduction, nitro reduction, formal hydroamination, and the radical alkenylation of alkyl halides have been developed. A Simple, easy-to-make, air- and moisture-stable iron(III) amine-bis(phenolate) complex catalysed the hydrosilylation of carbonyl compounds efficiently using triethoxysilane as the reducing agent. The reaction tolerated a wide range of substrates to give the corresponding alcohol products in good to excellent yields after hydrolysis of the hydrosilylated products (Scheme A1). Scheme A1. Iron-Catalysed Hydrosilylation of Carbonyl Compounds. The same catalyst was also an active catalyst for the chemoselective reduction of nitro arenes into corresponding amines using triethoxysilane as reducing agent. The method exhibited excellent chemoselectivity as other reducible functional groups such as halogen, ester, nitrile all kept unchanged during the reaction. This catalytic system was then successfully applied to the formal hydroamination of alkene to give substituted amine in synthetic useful yields under mild condition. The reaction is hypothesised to proceed through a radical intermediate (Scheme A2). Scheme A2. Iron-Catalysed Nitro Reduction and Alkene Formal Hydroamination. Finally, FeCl2-catalysed formal Heck cross-coupling has been developed between alkyl halides and styrenes. The reaction tolerated both electron-rich and electron-neutral substrates to give the products in moderate to excellent yields. Initial studies revealed that the reaction also proceeds through a radical intermediate (Scheme A3). Scheme A3. Iron-Catalysed Formal Heck Cross-Coupling of Functionalised Alkyl Halides.
33

Synthesis and chemical biology of nitrated lipids /

Woodcock, Steven Robert, January 2007 (has links)
Thesis (Ph. D.)--University of Oregon, 2007. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 195-207). Also available for download via the World Wide Web; free to University of Oregon users.
34

The reduction of aromatic nitro compounds with sodium alcoholates

Suter, Chester Merle, Dains, Frank Burnett, January 1900 (has links)
Thesis (Ph. D.)--University of Kansas, 1927. / A reprint of an article, by C.M. Suter and F.B. Dains, published in the Journal of the American chemical Society, v. 50, no. 10, Oct., 1928.
35

The Polarographic Study of P-nitroacetophenone

Messick, Bobby G. January 1952 (has links)
The purpose of this investigation is to study the polarographic characteristics of p-nitroacetophenone.
36

Hemoprotein-Mediated Activation of Nitroalkanes

Li, Ling January 2009 (has links)
No description available.
37

OXYGEN ATOM TRANSFER REACTIONS OF NICKEL AND PALLADIUM NITRO COMPLEXES.

SIMONDSEN, JEANNE CLARE. January 1982 (has links)
The reactions of nitro complexes of nickel and palladium with CO have been examined to determine the mechanism(s) by which CO₂ is produced. The solution and solid state structures of square planar Ni(NO₂)₂(L)₂ reactants and pseudotetrahedral Ni(NO₂)(NO)(L)₂ products have been determined and related to their reactivity. Infrared, ³¹P{¹H}, and crystallographic data indicate rapid isomerization between nitro and nitrito bonding modes of the NO⁻₂ ligands. The crystal structures of Ni(NO₂)₂(PPh₂(Ch₂)₂PPh₂) (I), Ni(NO₂) (NO) (PMe₃)₂ (II), and [Ni(ONO) (NO) (PPh₂(CH₂)₂PPh₂]₂ (III), show the NO⁻₂ groups to be N-bonded in I and II and O-bonded in III. The nitrosyl ligands in II and III are non-linear (Ni-N-O = 165.5(8) ° and 153.4(8) °, respectively). Furthermore, III crystallizes as a dimer bridged by two phosphine ligands even though molecular weights show this complex to be monomeric in solution. Each Ni(NO₂) (NO) (L)₂ complex reacts with CO to produce stoichiometric amounts of Ni(NO₂) (NO) (L)₂ and CO₂. Rate date indicate the reaction proceeds associatively through formation of a carbonyl intermediate which has been directly observed in the reaction of Ni(NO₂)₂(P(C₆H₁₁)₃)₂ with CO. The reaction of C¹⁸O with Ni(NO₂)₂(PMe₃)₂ results in no incorporation of ¹⁸O into the nickel product while ¹⁸O is incorporated into CO₂ to form ¹⁸OC¹⁶O. The mechanism consistent with all of the data involves a rapid equilibrium between both forms of NO⁻₂ coordination followed by the reaction of CO with either isomer in the rate determining step to form a monocarbonyl complex. Irreversible oxygen atom transfer to CO and loss of CO₂ terminate the reaction. The corresponding square planar palladium complexes, Pd(NO₂)₂L₂, react with CO to form N₂O, CO₂ and novel tetranuclear palladium clusters (Pd₄(CO)₅L₄). A crystal structure of Pd₄(CO)₅ - (PMePh₂)₄ shows the cluster to be a distorted tetrahedron of metal atoms with one open edge and the five remaining edges each bridged by a carbonyl group.
38

Genes encoding the key enzymes for the bacterial degradation of the natural nitro compounds 3-nitrotyrosine and 1-nitro-2-phenylethane.

Parks, Samantha Terris 06 April 2010 (has links)
Natural nitro compounds with diverse structures and biological functions are produced by bacteria, fungi, plants and animals. Little is known about the behavior of such compounds in natural ecosystems. The lack of accumulation in the biosphere implies that they are biodegraded. Microbial strategies for biodegradation of synthetic nitro compounds are well established; however only two pathways are known for degradation of natural nitro compounds. The research described here examines the genes that encode the key enzymes required for biodegradation of 3-nitrotyrosine (3NTyr) and 1-nitro-2-phenylethane (NPE). 3NTyr is a biological marker for disease and inflammation in plants and animals. A 3NTyr degrading microbe, Variovorax sp. JS669 was isolated from soil. We identified the JS669 denA, which encodes an enzyme that catalyzes denitration of 4-hydroxy-3-nitro-phenylacetate, the key step in metabolism of 3NTyr. The isolation of 3NTyr degraders and development of molecular probes specific to denA revealed that 3NTyr degradation is a widespread phenomena in natural habitats and the compound is metabolized by phylogenetically diverse bacteria. Phylogenetic analysis of the 4-hydroxy-3-nitro-phenylacetate denitrase from JS669 revealed it to be the first functionally annotated protein in a clade of unidentified Class A flavin monooxygenases. NPE has been identified from several plants, yet the biodegradation of the compound remained a mystery. Here we report the degradation of NPE and its analog 2-nitropropylbenzene. Discovery of the metabolic pathway revealed a novel microbial strategy to use a meta-ring fission degradation pathway to cleave an undesirable side chain from an aromatic compound and use the remainder of the compound as a carbon and energy source. Two genes that encode enzymes in the biodegradation pathway were identified and both are deeply branched within their respective phylogenetic trees, indicating that both represent highly specialized microbial enzymes. Furthermore, microbial degradation of NPE resulted in the production of 3-nitropropionic acid, a natural toxin that inhibits succinate dehydrogenase and is responsible for livestock illness and death. This is the first report of bacterial production of 3-nitropropionic acid, and might represent a significant source of 3-nitropropionic acid in natural habitats. The findings from these studies contribute to the overall understanding of microbial metabolism. Specifically, this research reveals genes that encode novel enzymes and strategies for the biodegradation of two natural nitro compounds. Furthermore, discovery of mechanisms for the biodegradation of such compounds reveals novel microbial metabolic diversity and provides insight into the evolution of degradation pathways for synthetic compounds.
39

Separation of aryl nitro-compounds by HPLC on monolithic columns

Al-Harthy, Farida January 2009 (has links)
The project has demonstrated the use of both poly(styrene-divinylbenzene) PS-DVB and silica monolithic columns for the separation of nitro-compounds. Methods were developed with PS-DVB and ODS silica packed columns for the separation of these compounds. The first part of the project was the preparation of the monolithic stationary phases prepared from PS-DVB of (250 μm I.D. × 70 mm) functionalized with methacrylate by in-situ polymerisation. The alkylated PS-DVB then was used successfully for the first time in the separation of three aryl nitro-compounds (2-NA, 1,4-DNB and 4-NT) on micro-HPLC. However, the efficiency of this column was poor N = 318 (4675/m).The second part of the thesis used a commercial column (Chromolith Performance from Merck), with different diameters for the separation of nitro-compounds. Nitrocompounds were analysed on both Chromolith Performance 3 mm I.D. column and Chromolith Performance 4 mm I.D. column by HPLC/UV. Van Deemter plots showed that the 3 mm I.D. column gave higher efficiencies at higher flow rates than the 4.6 mm I.D. column. The plate number was 8216 (H = 0.0121 mm) at a flow rate of 0.4 ml/min (1.0206 mm/sec) and for Chromolith 4.6 mm I.D. it was 9436 (H = 0.0105 mm) at a flow rate of 0.8 ml/min (0.8577 mm/sec). The nitro-compounds analysed in this study were nitroaromatic, nitramines and nitrate esters which are used in the manufacture of explosives. These compounds were analysed for the first time using a Chromolith Performance 3 mm I.D. column on LCMS using both ESI and APCI in negative ionization modes. The sensitivity was higher in the APCI than the ESI mode in terms of higher intensity and lower background noise especially for nitroaromatic compounds. The LC-ESI-MS method was evaluated by injection of samples of pentaerythritol tetranitrate (PETN) in different concentrations. Calibration curves were constructed over the range of 1-1000 pg/μl with a correlation coefficient of (R2 = 0.9986) and with a concentration range between 1-200 ng/μl with a correlation coefficient of (R2 = 0.9971) and were found to be linear. The limit of detection (LOT) for pentaerythritol tetranitrate (PETN) was 5 pg/μl at a signal-to-noise ratio (S/N) of 3:1 and the limit of quantification (LOQ) was 10 pg/μl at a signal-to-noise ratio of 10:1. The applicability of the monolithic column for the LC-ESI-MS method was evaluated by injection of samples of the commercial explosives, P9 and Semtex 1H. The results showed that Semtex 1H contains 35% PETN using calibration curve 1-200 ng/μl and was much higher than in P9 0.0082% using calibration curve 1-1000 pg/μl.
40

Metal-Free O- and C-Arylation with Diaryliodonium Salts

Lindstedt, Erik January 2017 (has links)
This thesis concerns the development of metal-free applications using diaryliodonium salts. The first project describes an arylation protocol of allylic and benzylic alcohols in aqueous media. The method proceeds under mild conditions and the ether products were obtained in moderate to good yields. The methodology was also expanded to include arylation of phenols, giving diaryl ethers in good to excellent yields. In the second project, an arylation method that included a wider range of aliphatic alcohols was developed. The scope of accessible alkyl aryl ethers was studied and included a comparative study of phenylation and nitrophenylation of various alcohols. Finally, a formal metal-free synthesis of butoxycain was performed, illustrating the applicability of the developed method. The third project focused on the limitations and side reactions occurring in Chapter 2 and 3. First, an approach to access symmetric diaryl ethers via arylation of hydroxide was presented. This reaction gave rise to a number of side products, which we hypothesized to originate from aryne-type intermediates. A mechanism for the formation of these side products was suggested, supported by trapping and deuterium labeling experiments. Oxidation of the alcohol to the corresponding ketone was also observed and the mechanism of this interesting side reaction was investigated. The latter was suggested to proceed via an intramolecular oxidation without the involvement of radicals or arynes. The fourth project covers a method to synthesize highly sterically congested alkyl aryl ethers via arylation of tertiary alcohols using diaryliodonium salts. The method displayed a broad scope of tertiary alcohols and was also suitable for fluorinated alcohols. The final project detailed in this thesis deals with C-arylation with diaryliodonium salts, showcasing nitroalkanes as well as a nitro ester as suitable nucleophiles for metal-free arylation. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.</p>

Page generated in 0.0668 seconds