31 |
Molecular Mechanisms of Glycine Primed NMDA Receptor InternalizationHan, Lu 12 December 2012 (has links)
N-Methyl-D-aspartate receptors (NMDARs) are a principal subtype of excitatory ligandgated
ion channel with prominent roles in physiology and disease in the mammalian
central nervous system (CNS). Activation of NMDARs requires binding of both
glutamate and glycine. Apart from its co-agonist action, glycine can also prime NMDARs
for subsequent internalization upon binding of both glutamate and glycine. However, the
molecular basis responsible for mediating and regulating glycine priming and NMDAR
endocytosis is largely unknown. In my thesis, I discovered the principle that although
NMDAR gating and priming share a common requirement for glycine binding, the
molecular constraints for gating are distinct from those for priming through two mutations
of the glycine binding site in GluN1 subunit of the NMDAR that, while maintaining
gating of NMDARs, eliminate glycine priming of the receptors. One of the molecular
signatures of glycine priming is recruitment of the endocytic adaptor protein AP-2. I have
characterized the two regions in GluN2 subunits required for enhanced AP-2 association.
This unexpected result suggests binding of glycine initiates a conformational change
transmitted from GluN1 to GluN2 allowing for docking of endocytic machinery.
Furthermore, I have discovered that naturally occurring splice variants of GluN1 subunit,
containing a 21 amino acid sequence in the N-terminus domain (N1) cassette, abrogate
glycine stimulated AP-2 recruitment and glycine-primed NMDAR internalization. These
findings imply that there are distinct populations of native NMDARs in the CNS – those
lacking N1 that show glycine-primed internalization and those containing N1 that are not
primable. Collectively, my thesis work demonstrates a dramatic all-or-none priming effect
with splice variants of NMDARs, a highly unexpected discovery providing novel insight into the molecular mechanisms and physiological role of glycine priming. Ultimately,
elucidating principles and mechanisms of glycine priming lay the foundation for new
types therapeutic approaches for CNS disorders, approaches without the deleterious
consequences of directly blocking NMDARs.
|
32 |
Επίδραση της ντοπαμινεργικής εκφύλισης στη φωσφορυλίωση του υποδοχέα NMDA στο ραβδωτό σώμα εγκεφάλου μυόςΚουτσοκέρα, Μαρία 28 August 2008 (has links)
Στην παρούσα εργασία ο πρώτος στόχος είναι η μελέτη των πρωτεϊνικών επιπέδων της υπομονάδας NR2B του υποδοχέα NMDA. Σε προηγούμενη εργασία του εργαστηρίου μας παρατηρήθηκε αύξηση των επιπέδων έκφρασης στο mRNA της υπομονάδας NR2B στο ραβδωτό σώμα των μυών weaver ηλικίας έξι μηνών. Η αύξηση του mRNA δεν ακολουθείται πάντα από αύξηση της πρωτεΐνης καθώς το mRNΑ μπορεί να καταστρέφεται προτού οδηγήσει στη δημιουργία νέων πρωτεϊνικών μορίων.
Δεύτερος στόχος της εργασίας είναι η μελέτη της επίδρασης της ντοπαμινεργικής εννεύρωσης στη φωσφορυλίωση της υπομονάδας NR2B του υποδοχέα NMDA. Επιλέχθηκε η μελέτη της φωσφορυλίωση της υπομονάδας NR2B του υποδοχέα NMDA στη σερίνη 1303 λόγω του ότι στη συγκεκριμένη θέση φωσφορυλιώνεται από την ασβεστιοεξαρτώμενη κινάση της καλμοδουλίνης (CaMKII). H CaMKII εμπλέκεται στο LTP και στο LTD και στο μοντέλο της 6-OHDA φαίνεται να επηρεάζεται από την ντοπαμινεργική ανεπάρκεια. Αλλαγές, συνεπώς, στα επίπεδα φωσφορυλίωσης στη σερίνη 1303 είναι πιθανό να απορρέουν από αλλαγές στα επίπεδα της CaMKII, οδηγώντας σε μεταβολή της συναπτικής πλαστικότητας του ραβδωτού σε ντοπαμινεργική ανεπάρκεια. / -
|
33 |
Developmental Consequences of N-methyl-D-aspartate Receptor HypofunctionMilenkovic, Marija 14 December 2011 (has links)
NMDA receptor signaling is required for proper synapse formation, maintenance, plasticity and function. Dysregulation of the NMDA receptor has been implicated in pathophysiology of schizophrenia, which has an adult onset of symptoms. NMDA receptor deficient mice were utilized to assess the developmental consequences of NMDA receptor hypofunction. Locomotor activity was elevated throughout development; however, deficits in social interaction and working memory only manifest in adulthood and did not progress with age. Age-dependent deficits in neuron synapse biology were also detected; postsynaptic spine number was normal in juveniles, decreased post-adolescence, and progressively declined in adulthood. To investigate possible molecular mechanisms underlying the observed changes in spine number, protein levels of RhoGTPases and their downstream effectors were examined. Significant changes in Rac1 and downstream effectors were detected at different developmental stages. These studies provide clarification of the temporal sequence of events and mechanisms by which NMDA receptor dysfunction affects neurodevelopment.
|
34 |
Developmental Consequences of N-methyl-D-aspartate Receptor HypofunctionMilenkovic, Marija 14 December 2011 (has links)
NMDA receptor signaling is required for proper synapse formation, maintenance, plasticity and function. Dysregulation of the NMDA receptor has been implicated in pathophysiology of schizophrenia, which has an adult onset of symptoms. NMDA receptor deficient mice were utilized to assess the developmental consequences of NMDA receptor hypofunction. Locomotor activity was elevated throughout development; however, deficits in social interaction and working memory only manifest in adulthood and did not progress with age. Age-dependent deficits in neuron synapse biology were also detected; postsynaptic spine number was normal in juveniles, decreased post-adolescence, and progressively declined in adulthood. To investigate possible molecular mechanisms underlying the observed changes in spine number, protein levels of RhoGTPases and their downstream effectors were examined. Significant changes in Rac1 and downstream effectors were detected at different developmental stages. These studies provide clarification of the temporal sequence of events and mechanisms by which NMDA receptor dysfunction affects neurodevelopment.
|
35 |
Die neuroprotektive Wirkung der NMDA-Rezeptorantagonisten CGS, Memantin und Ifenprodil, sowie Roscovitin und NMDA auf die hypoxiebedingte Zellschädigung an embryonalen kortikalen Zellen von RattenHoltkamp, Johanna 23 March 2015 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit dem Einfluss der NMDA-Rezeptorantagonisten, Memantin, MK-801, CGS und Ifenprodil auf die hypoxieinduzierte Zellschädigung an kortikalen Zellen der Ratte. Außerdem wurde der Einfluss von subtoxischen Konzentrationen von NMDA sowie von Roscovitin, einem Hemmer Cyclin-abhängiger Kinasen, auf die hypoxiebedingte Zellschädigung untersucht. Ziel dieser Arbeit war es, die neuroprotektive Wirkung dieser Substanzen zu erfassen.
Zur Untersuchung der hypoxischen Schädigung wurden zwei 48-Well-Zellkulturplatten mit 15 Tage alten kortikalen Zellen der Ratte verwendet. Eine Kulturplatte wurde für vier Stunden mit HEPES(N-2-Hydroxyethylpiperazine-N’-2-Ethansulfonsäure)-Puffer (ohne Glucose) unter hypoxischen Bedingungen inkubiert. Die zweite Platte, mit glukorisiertem HEPES-Puffer, wurde für vier Stunden unter normoxischen Bedingungen inkubiert. Der HEPES-Puffer wurde nach vier Stunden entfernt, die Kulturplatten mit Dulbecco’s Modified Eagle Medium (DMEM) gewaschen und mit diesem Medium für 24 Stunden unter normoxischen Bedingungen inkubiert. Anschließend wurde das Medium ent¬fernt, durch NMDA, Memantin, Roscovitin, CGS und Ifenprodil ersetzt und die Ansätze für weitere 24 Stunden unter normoxischen Bedingungen inkubiert.
Zur Beurteilung der Zellschädigung wurden der Aktivitätsanstieg der Laktat-Dehydrogenase (LDH), die Freisetzung freier Sauerstoffradikale und die Steigerung der Caspase-Aktivität bestimmt. Während die Bestimmung der LDH-Aktivität und die Freisetzung der freien Sauer¬stoff¬radikale nekrotische Veränderungen der Zellen charakterisiert, zeigt eine Zunahme der Caspase-Aktivität apoptotische Vorgänge an.
LDH ist ein stabiles zytoplasmatisches Enzym, das in fast allen Körperzellen vorkommt. Beim Absterben der Zelle wird das Enzym durch die Schädigung der Plasmamembran aus der Zelle freigesetzt, so dass es zu einem Anstieg der LDH-Aktivität proportional zur Anzahl der toten Zellen kommt. Diese Aktivität wurde spektrophotometrisch mit einem Mikrotiterplatten-Lesegerät bestimmt. Die Ergebnisse des LDH-Tests zeigen, dass nach der 24-stündigen Behandlung der Zellen mit MK-801 die LDH-Aktivität um 11%, bei Roscovitin um 13%, bei Memantin (5 µM) um 56%, bei Memantin (0,5 µM) um 52% und mit NMDA (5 µM) um 44% signifikant vermindert wurde.
Bei einer hypoxiebedingten Schädigung kortikaler Zellen kommt es auch zur Bildung freier Sauer¬stoff¬radikale. 2’,7’-Dichlorfluorescein Diacetat (2’,7’-H2DCF-DA) wird von den Zellen auf¬ge¬nommen und intrazellulär mit Sauerstoff- und Stickstoffspezies zum Fluoreszenz¬farb-stoff 2’,7’-Dichlorodihydrofluorescein (DCF) deacetyliert. DCF verbleibt dabei in den Zellen, so dass die Messung der Fluoreszenz der Zellen als Maß für intrazelluläre Oxidationsprozesse verwendet werden kann. Die DCF-Fluoreszenz-Änderung wurde mittels eines Fluorimeters gemessen und die daraus resultierenden Daten mit einer im Fluorimeter integrierten Software bearbeitet. Die Ergebnisse zeigen, dass die Freisetzung der freien Sauerstoffradikale, der hypoxiegeschädigten Zellen, signifikant durch Ifenprodil (10 µM) um 119%, Memantin (50 µM) um 88% und NMDA (5 µM) um 134% reduziert wurde.
Die hypoxieinduzierte Zellmembranschädigung führt desweiteren zu einem Anstieg der Caspase-Aktivität. Mit Hilfe des Apo-One Homogeneous Caspase-3/7-Assays (Promega) wurde die Aktivität der Caspasen 3 und 7 fluorimetrisch bestimmt. Um die unterschiedliche Zelldichte in den Kulturschalen zu berücksichtigen, wurde eine Proteinbestimmung nach der Bicinchoninsäure-Methode (Smith et al. 1985) durchgeführt.
Einen protektiven Effekt auf die Zellschädigung zeigen Memantin und NMDA in Bezug auf die Beeinflussung dieser Caspase-Aktivität. Der hypoxiebedingte Anstieg der Caspase-3-Aktivität konnte nach 24-stündiger Inkubation mit Memantin (5 µM) um 24%, mit Memantin (0,5 µM) um 28% und mit NMDA (5 µM) um 24% vermindert werden.
CGS hat in diesen Versuchen keinen protektiven Einfluss auf die hypoxie¬induzierte Zellschädigung.
Diese Arbeit zeigt, dass die Applikation niedriger NMDA-Konzentrationen neuroprotektive Effekte auf die Entwicklung der hypoxischen Schädigung von kortikalen Zellen der Ratte hat. Darüber hinaus wird vermutet, dass NMDA sogar einen trophischen Effekt auf das Über-leben der kortikalen Neurone ausübt. Dieser schützende Mechanismus von NMDA scheint denselben, wenn nicht sogar einen größeren protektiven Effekt wie Memantin zu induzieren.
Um die Therapiemöglichkeiten der zerebralen Hypoxie durch neuroprotektive Medikamente zu optimieren, wären jedoch weitergehende Untersuchungen besonders als In-vivo-Modelle wünschenswert.
|
36 |
SOMATIC INJURY PRECEDES DISTAL ATROPHY FOLLOWING EXCITOTOXIC HIPPOCAMPAL INSULTSharrett-Field, Lynda 01 January 2010 (has links)
Excitotoxicity can lead to increases in intracellular Na+ and Ca2+ concentrations via the glutamatergic NMDA receptors, which can lead to cell death. Detailing the time-dependent degradation of neuronal components in response to excitotoxic challenge may help elucidate the sequence in which these signaling pathways are initiated and further, associate these pathways with topographic cellular demise. Using organotypic hippocampal slice culture technique, tissue from neonatal rat pups was exposed to NMDA, APV, or co-exposed for 24, 72 or 120 hours. Fluorescent microscopy of propidium iodide (PI) was used to evaluate neuronal membrane damage, changes in the density of mature soma (NeuN) and NMDA NR2B subunits were measured using immunohistochemical procedures. After 24 hours of exposure, the CA1 showed an increased PI signal and a decrease in NeuN marker, indicating somatic injury occurs shortly after excitotoxic challenge; these effects were blocked by co-administration of APV. Also in the CA1, loss of NR2B subunits, heavily expressed in dendritic processes, declined following 72 hours of exposure. Because somatic injury precedes loss of distal NR2B subunits, it is possible that these events involve different mechanisms, findings that may be relevant in the development of therapies to target neurodegeneration resulting from excitotoxicity.
|
37 |
5-HT7 Receptor Neuroprotection against Excitotoxicity in the HippocampusVasefi, Seyedeh Maryam January 2014 (has links)
Introduction and Objectives: The PDGFβ receptor and its ligand, PDGF-BB, are expressed throughout the central nervous system (CNS), including the hippocampas. Several reports confirm that PDGFβ receptors are neuroprotective against N-methyl-D-asparate (NMDA)-induced cell death in hippocampal neurons. NMDA receptor dysfunction is important for the expression of many symptoms of mental health disorders such as schizophrenia.
The serotonin (5-HT) type 7 receptor was the most recent of the 5-HT receptor family to be identified and cloned. 5-HT receptors interact with several signaling systems in the CNS including receptors activated by the excitatory neurotransmitter glutamate such as the NMDA receptor. Although there is extensive interest in targeting the 5-HT7 receptor with novel therapeutic compounds, the function and signaling properties of 5-HT7 receptors in neurons remains poorly characterized.
Methods: The SH-SY5Y neuroblastoma cell line, primary hippocampal cultures, and hippocampal slices were treated with 5-HT7 receptor agonists and antagonists. Western blotting was used to measure PDGFß receptor expression and phosphorylation as well as NMDA receptor subunit expression and phosphorylation levels. Real-time RT-PCR was used to measure mRNA level of PDGFß receptor in neuronal cultures. Cell death assays (MAP2, MTT) were used to measure the neuroprotective effects of 5-HT7 and PDGFß receptor activation.
Results: My research involved elucidating the molecular mechanisms of neuroprotection after 5-HT7-induced PDGFß receptor upregulation. I demonstrated that 24 h treatment with the selective 5-HT7 receptor agonist, LP 12, increased not only the expression but also the activation of PDGFß receptors as measured by the phosphorylation of tyrosine 1021, the phospholipase Cγ binding site. Activation of the 5-HT7 receptor also selectively changed the expression and phosphorylation state of the NR2B subunit of the NMDA receptor. Activation of 5-HT7 receptors was neuroprotective against NMDA-induced toxicity in primary hippocampal neurons and this effect required PDGFß receptor kinase activity. Thus, long-term (24 h) activation of 5-HT7 receptors was neuroprotective via increasing the expression of a negative regulator of NMDA activity, the PDGFß receptor. In contrast, acute activation (5-30 min) of 5-HT7 receptor increased NMDA evoked current and altered NMDA receptor subunit phosphorylation in hippocampal neurons in a manner that was different from what we observed in our 24 h experiments.
Conclusions: I identified two 5-HT7 receptor to NMDA receptor pathways: acute activation of the receptor increased NMDA-evoked currents whereas long-term 5-HT7 agonist treatment prevented NMDA-induced excitotoxicity in a PDGFß receptor-dependent manner. This research is significant in the ongoing advances for the treatment of mental heath disorders, such as schizophrenia and depression, that involve the 5-HT, glutamate, and neuronal growth factor systems.
|
38 |
Activation of Sigma-1 Receptors Increases Expression, Trafficking, and Surface Levels of NMDA ReceptorsPabba, Mohan 16 April 2014 (has links)
Sigma-1 receptors (σ-1Rs) are chaperone-like proteins that are broadly distributed throughout the central nervous system and in other tissues. They have been implicated in several physiological and pathological processes, primarily by their ability to modulate certain voltage- and ligand-gated ion channels. Growing evidence suggests that σ-1Rs regulate the functions of ion channels, such as voltage-gated K+ 1.2 (Kv 1.2) and the human Ether-à-go-go-Related Gene (hERG) ion channels, by modulating their expression, trafficking, and targeting.
While it is well documented that σ-1Rs enhance the function of N-methyl-D-aspartate receptors (NMDARs), the mechanisms of this enhancement remain poorly understood. Using biochemical methods, we show that 90 minutes after intraperitoneal (i.p.) injection of σ-1R agonists such as (+)-SKF 10,047 (SKF) or (+)-Pentazocine (PTZ) (2 mg/kg), there is an increase in the expression of GluN2 subunits of NMDARs and postsynaptic density protein-95 (PSD-95) in the rat hippocampus. Following activation of σ-1Rs, co-immunoprecipitation (Co-IP) experiments reveal an increased interaction between σ-1Rs and NMDAR subunits; sucrose gradient centrifugation demonstrates an increase in the protein levels of GluN2 subunits in vesicular compartment; and biotinylation shows an increase in the surface levels of GluN2A-containing NMDARs.
Taken together, our results suggest σ-1Rs may enhance NMDARs function by increasing their expression, trafficking, and surface levels. This σ-1R-mediated increase in NMDAR expression and surface levels might be involved in several physiological processes such as learning and memory. Our findings also suggest that σ-1Rs could form a potential target for designing novel antipsychotics.
|
39 |
The Differential Regulation of Subtypes of N-methyl-D-aspartate Receptors in CA1 Hippocampal Neurons by G Protein Coupled ReceptorsYang, Kai 06 December 2012 (has links)
The role of NMDAR subtypes in synaptic plasticity is very controversial, partially caused by the lack of specific GluN2A containing NMDA receptor (GluN2AR) antagonists. Here we took a novel approach to selectively modulate NMDAR subtype activity and investigated its role in the induction of plasticity. Whole cell recording in both acutely isolated CA1 cells and hippocampal slices demonstrated that pituitary adenylate cyclase activating peptide 1 receptors (PAC1 receptors), which are Gαq coupled receptors, selectively recruited Src kinase and enhanced currents mediated by GluN2ARs. In addition, biochemical experiments showed that the activation of PAC1 receptors phosphorylated GluN2ARs specifically. In contrast, vasoactive intestinal peptide receptors (VPAC receptors), which are Gαs coupled receptors, selectively stimulated Fyn kinase, potentiated currents mediated by GluN2B containing NMDARs (GluN2BRs). Furthermore, dopamine D1 receptor activation (another Gαs coupled receptor) specifically phosphorylated GluN2BRs. Interestingly, field recording experiments showed that PAC1 receptor activation lowered the threshold for LTP whilst LTD was enhanced by dopamine D1 receptor activation. In conclusion, the activity of GPCRs can signal through different pathways to selectively modulate absolute contribution of GluN2ARs versus GluN2BRs in CA1 neurons via Src family kinases. Furthurmore, Epac, activated by some Gαs coupled receptors, also modulated NMDAR currents via a PKC/Src dependent pathway, but whether it selectively modulates NMDAR subtypes, and has capacity to change the induction of plasticity, requires further study.
By this means, we can investigate the role of NMDAR subtypes in the direction of synaptic plasticity by selectively modulating the activity of GluN2ARs or GluN2BRs. In addition, based on my work, some interfering peptides and drugs can be designed and used to selectively inhibit the activity of GluN2BRs and GluN2ARs by interrupting Fyn- and Src - mediated signaling cascade respectively. It will provide new candidate drugs for the treatment of some neurological diseases such as Alzheimer disease (AD) and schizophrenia.
|
40 |
Molecular Mechanisms of Glycine Primed NMDA Receptor InternalizationHan, Lu 12 December 2012 (has links)
N-Methyl-D-aspartate receptors (NMDARs) are a principal subtype of excitatory ligandgated
ion channel with prominent roles in physiology and disease in the mammalian
central nervous system (CNS). Activation of NMDARs requires binding of both
glutamate and glycine. Apart from its co-agonist action, glycine can also prime NMDARs
for subsequent internalization upon binding of both glutamate and glycine. However, the
molecular basis responsible for mediating and regulating glycine priming and NMDAR
endocytosis is largely unknown. In my thesis, I discovered the principle that although
NMDAR gating and priming share a common requirement for glycine binding, the
molecular constraints for gating are distinct from those for priming through two mutations
of the glycine binding site in GluN1 subunit of the NMDAR that, while maintaining
gating of NMDARs, eliminate glycine priming of the receptors. One of the molecular
signatures of glycine priming is recruitment of the endocytic adaptor protein AP-2. I have
characterized the two regions in GluN2 subunits required for enhanced AP-2 association.
This unexpected result suggests binding of glycine initiates a conformational change
transmitted from GluN1 to GluN2 allowing for docking of endocytic machinery.
Furthermore, I have discovered that naturally occurring splice variants of GluN1 subunit,
containing a 21 amino acid sequence in the N-terminus domain (N1) cassette, abrogate
glycine stimulated AP-2 recruitment and glycine-primed NMDAR internalization. These
findings imply that there are distinct populations of native NMDARs in the CNS – those
lacking N1 that show glycine-primed internalization and those containing N1 that are not
primable. Collectively, my thesis work demonstrates a dramatic all-or-none priming effect
with splice variants of NMDARs, a highly unexpected discovery providing novel insight into the molecular mechanisms and physiological role of glycine priming. Ultimately,
elucidating principles and mechanisms of glycine priming lay the foundation for new
types therapeutic approaches for CNS disorders, approaches without the deleterious
consequences of directly blocking NMDARs.
|
Page generated in 0.0336 seconds