• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Essays in financial economics

Bova, Giuseppe January 2013 (has links)
We present in this thesis three distinct models in Financial Economics. In the first chapter we present a pure exchange economy model with collateral constraints in the spirit of Kiyotaki and Moore (1997). As a first result in this chapter we prove the existence of an equilibrium for this type of economies. We show that in this type of models bubbles can exist and provide a bubble example in which the asset containing the bubble pays positive dividends. We also show for the case of high interest rates the equivalence between this type of models and the Arrow-Debreu market structure. In the second chapter we present a model with limited commitment and one-side exclusion from financial markets in case of default. For this type of models we prove a no-trade theorem in the spirit of Bulow and Rogoff (1989). This is done for an economy with and without bounded investment in a productive activity. The third chapter presents a 2 period economy with complete markets, and 250 states of the world and assets. For this economies we generate a sequence of observed returns, and we show that a market proxy containing only 80% of the assets in the economy provides similar results as the true market portfolio when estimating the CAPM. We also show that for the examples we present a vast amount of observations is required in order to reject the CAPM. This raises the question what the driving force behind the bad empirical performance of the CAPM is.
2

Essays on Robust Social Preferences under Uncertainty / 不確実性下の頑健性を持つ社会選好に関する小論

Li, Chen 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(経済学) / 甲第24381号 / 経博第668号 / 新制||経||303(附属図書館) / 京都大学大学院経済学研究科経済学専攻 / (主査)教授 関口 格, 教授 原 千秋, 教授 NEWTON Jonathan Charles Scott / 学位規則第4条第1項該当 / Doctor of Economics / Kyoto University / DGAM
3

Deep Learning for Dynamic Portfolio Optimization / Djupinlärning för dynamisk portföljoptimering

Molnö, Victor January 2021 (has links)
This thesis considers a deep learning approach to a dynamic portfolio optimization problem. A proposed deep learning algorithm is tested on a simplified version of the problem with promising results, which suggest continued testing of the algorithm, on a larger scale for the original problem. First the dynamics and objective function of the problem are presented, and the existence of a no-trade-region is explained via the Hamilton-Jacobi-Bellman equation. The no-trade-region dictates the optimal trading strategy. Solving the Hamilton-Jacobi-Bellman equation to find the no-trade-region is not computationally feasible in high dimension with a classic finite difference approach. Therefore a new algorithm to iteratively update and improve an estimation of the no-trade-region is derived. This is a deep learning algorithm that utilizes neural network function approximation. The algorithm is tested on the one-dimensional version of the problem for which the true solution is known. While testing in one dimension only does not assess whether this algorithm scales better than a finite difference approach to higher dimensions, the learnt solution comes fairly close to true solution with a relative score of 0.72, why it is suggested that continued research of this algorithm is performed for the multidimensional version of the problem. / Den här uppsatsen undersöker en djupinlärningsmetod for att lösa ett dynamiskt portföljoptimeringsproblem. En föreslagen djupinlärningsalgoritm testas på en föreklad version av problemet, med lovande resultat. Därför föreslås det vidare att algoritmens prestanda testas i större skala även för det urpsrungliga problemet. Först presenteras dynamiken och målfunktionen för problemet. Det förklaras via Hamilton-Jacobi-Bellman-ekvationen varför det finns en handelsstoppregion. Handelsstoppregionen bestämmer den optimala handelsstrategin. Att lösa Hamilton-Jacobi-Bellman-ekvationen för att hitta handelsstoppregionen är inte beräkningspratiskt möjligt i hög dimension om ett traditionellt tillvägagångssätt med finita differenser används. Därför härleds en ny algoritm som iterativt uppdaterar och förbättrar en skattning av handelsstoppregionen. Det är en djupinlärningsalgoritm som utnyttjar funktionsapproximation med neurala nätverk. Algoritmen testas på den endimensionella verisonen av problemet, för vilken den sanna lösningen är känd. Tester i det endimensionella fallet kan naturligtvis inte ge svar på frågan om den nya algoritmen skalar bättre än en finit differensmetod till högre dimensioner. Men det är i alla fall klart att den inlärda lösningen kommer tämligen nära den sanna med relativ poäng 0.72, och därför föreslås fortsatt forskning kring algoritmen i förhållande till den flerdimensionella versionen av problemet.

Page generated in 0.0409 seconds