• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 18
  • 13
  • 2
  • 2
  • Tagged with
  • 104
  • 104
  • 34
  • 34
  • 31
  • 24
  • 23
  • 23
  • 23
  • 21
  • 21
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nitrogen Mineralization Dynamics of Post Harvest Crop Residue in No-Till Systems

Alghamdi, Rashad Saeed January 2020 (has links)
In North Dakota, adoption of conservation tillage practices has resulted in an accumulation of crop residue remaining on the soil surface. North Dakota producers receive a nitrogen credit for long-term no-till but due to previous crop residue this credit may not be realistic for providing partial nutrient needs to subsequent crops in a cool environment with a short growing season. Our objectives were to evaluate the N mineralization potential of common crop residues to determine whether crop residue accumulation in no-till systems can provide sufficient nitrogen quantities needed for subsequent crops. Three lab incubation studies were conducted to provide N mineralization insights for individual crop residues, crop residues over several simulated growing seasons, and crop residue in diversified cropping systems. Differences in soil texture, surface application versus incorporation of residue, freeze and thaw cycles and combinations of residues were all factors examined. Results indicated that crop residue decomposition and N release from the residue treatments generally immobilized N but were not significantly different from the bare soil for nearly all studies. The only exception observed was for the forage radish cover crop which showed the potential to improve soil N mineralization in select three-year rotations. Findings of these studies show that most wide C:N ratio crop residues will immobilize soil N in a no-till system under ideal conditions (i.e. moisture, temperature, and residue particle size). These findings suggestion that a fertilizer N credits may require reevaluation and take into consideration soil moisture with validated data to support the fertilizer N credit.
12

Long-term effects of tillage practices on soil physical, chemical, and biological health, and its economic and ecologic implications

Weidhuner, Amanda Marie 01 December 2021 (has links)
Demands for sustainable crop production are increasing to cope with threats of climate change and diversity loss. Tillage is one of the main farming practices that could impact crop production, soil, and air quality. We utilized a long-term (>48-yr old) tillage trial to evaluate four tillage systems including: (i) moldboard plow (MP), (ii) chisel-disk (grower’s current practice) (CD), (iii) alternate tillage [2-yr no-till (NT) and 1-yr MP; AT], and (iv) NT on corn (Zea mays L.) and soybean (Glycine max L.) grain production, nutrient removal and balances, soil physical, chemical, and biological properties, and nitrous oxide (N2O) emissions. We found that a switch from intensive tillage practices (CD and MP) to NT resulted in (i) similar corn and soybean grain yield, nutrient removal, and balances; (ii) increased soil aggregation and aggregate stability; (iii) increased soil organic carbon (C), active C, and aggregate associated C and nitrogen at 0-15 cm soil depth (iv) had consistence penetration resistance at the plow depth (30 cm depth), lower bulk density, higher soil porosity and available water capacity; (v) had lower soil NO3-N and TN, two-yr cumulative N2O-N emissions, and yield-scaled N2O-N (vi) greater soil ecosystem stability based on nematode community populations; (vii) increased earthworm abundance and biomass, diversity and species evenness, and percentage of epigeic ecotypes. Interestingly, NT did not influence soil C beyond topsoil indicating a limitation for NT to sequester C at deeper soil layers. These findings indicate improved soil in NT vs. other tillage practices provides C sequestration and reduced environmental footprints, without impacting grain yield while improving functional soil biology. Because the cost of NT operations are lower than other tillage practices, we concluded continuous NT could be a step towards sustainable crop production. To further improve the sustainability of crop production, other practices (e.g. cover cropping, crop diversification, soil amendments etc.) should be integrated into continuous NT practices.
13

Effective Management of the Weed Seed Bank

Trader, Mackenzie R 01 December 2022 (has links)
With herbicide efficacy declining as weeds continue to evolve and resist key modes of action, long-term, multi-faceted control practices need to be investigated. Two studies, involving cover crops and tillage, were implemented to understand how management practices influence the weed seed bank. The objectives of both studies were to examine long-term changes in the weed seed bank in response to tillage methods, fertility, and cover crops, and to analyze differences in distribution and community composition between individual species in the weed seed bank. To assess the weed community present in both seed banks, soil samples were collected, and a soil grow out was conducted in the greenhouse. To examine the field-emerged seed banks, percent coverage was collected for each weed species, crop residue, bare ground, and cover crop if present. The first study was established in 1970, evaluating four tillage systems: moldboard plow (CT), chisel plow (RT), alternative (AT), and no-tillage (NT). From 1970 to 1990, this study was continuous corn (Zea mays L.), but in 1991, soybeans (Glycine max L.) were added into the rotation, marking the beginning of the current corn-soybean rotation. Fertilizer treatments (no-fertilizer, nitrogen only, and NPK) were also evaluated. Each tillage and fertility treatment were replicated four times in the field in 6 m by 8 m plots. Weed seeds were found to be distributed within the soil profile differently by tillage treatment. No-till treatments maintained most of the seed bank near the surface of the soil. Based on the response of individual species to fertility treatments, community shifts in seed bank composition were found. LAMAM, STEME, and SIBVI had the greatest richness in NPK treatments compared to no fertilizer and nitrogen only. CERVU tended to favor treatments without any fertilizer. Tillage and fertility were also found to interact and influence species presence and community composition. The second study was established in 2013, to examine changes and differences in distribution and composition between individual species in the weed community in response to cover crop rotations and tillage. A split-plot design with three crop rotation systems was implemented: 1) corn (Zea mays L.) – cereal rye (Secale cereale L.) – soybean (Glycine max (L.) Merr.) – hairy vetch (Vicia villosa Roth) [CcrShv], 2) corn-cereal rye-soybean-oats + radish (Avena sativa L. + Raphanus sativus L.) [CcrSor], and 3) corn-no cover crop-soybean-no cover crop [NOCC], and two tillage treatments: conventional tillage and no-till. This field study also supported previous findings of higher weed diversity in no-till systems. ANOVA performed in R suggested species richness was significantly higher in no-tillage treatments in comparison to tillage treatments. For the field-emerged weed community, a pairwise comparisons test suggested cover crop treatments have significantly lower weed richness compared to plots with no cover crop present, but there was no interactive effect of tillage. 3-Way ANOVAs suggested time, tillage, and crop rotation influenced each weed species differently. Due to individual weed species having different requirements for germination and seed longevity, these data suggest the importance of developing and implementing a quality, integrated weed management program to maintain low levels of weed emergence and seed credits to the seed bank.
14

Industrial hemp agronomic management for grain, fiber, and forage

Podder, Swarup 12 September 2023 (has links)
This research involved testing several aspects of industrial hemp (Cannabis sativa L.) production, including the impact of tillage on seed and fiber production, optimal harvest time for seed yield and quality, the response of seed yield to nitrogen fertility rates, and the potential of hemp as a forage crop. A three-year study was conducted in Blacksburg and Orange of Virginia State to assess the effects of tillage management and production systems (e.g., seed, dual, and fiber) on hemp establishment and productivity. Two cultivars, Joey (a dual-purpose variety) and EcoFibre (bred specifically for fiber), were planted into seedbeds prepared with conventional tillage and no-till management. The cultivar Joey, lower plant populations under seed production systems resulted in taller plants (P = 0.0002) compared to the dual-purpose production systems in 2020. Greater plant heights (P < 0.0001) with fiber production systems in 2021 and 2022 were due to differences between cultivars and their time of flowering. Conventional tillage resulted in greater (P ≤ 0.0161) plant populations than no-tillage for all production systems in each year, and this response was more pronounced with fiber management in 2020 (tillage × production systems interaction; P = 0.0007). Greater (P < 0.001) yields with fiber systems observed in 2021 and 2022 were largely driven by the more productive EcoFibre cultivar. Despite treatment differences in population density, biomass and seed yields varied less by tillage management and production systems. Lower plant population density was associated with greater biomass and seed yields per plant. However, for desired fiber quality and mechanical harvest feasibility, a higher plant population density is recommended. A second study aimed to determine the optimum harvest time for seed yield of two hemp cultivars. 'Joey', and 'Grandi,', were established in Blacksburg and Orange, Virginia in mid-May/early June of 2021 and 2022. The experiment was conducted as a randomized complete block design with a repeated measurement arrangement and four replicates. Plants were harvested four times at one-week intervals starting in mid-summer. Harvest date significantly affected seed yield, with the response differing by cultivar (cultivar × date interaction; P = 0.001) in 2022 at the Orange site. In Blacksburg, seed yields were similar for the two cultivars and greatest at the second harvest each season (July 22, 2021, and July 25, 2022), although they were substantially lower in 2022 due to drought (1750 vs. 480 kg ha-1; P < 0.0001). In Orange, in 2021, as planting occurred late, harvests were also deferred until August 17, and seed yields were greatest at this first harvest (1180 kg ha-1; P<0.0001). In 2022, yields at the Orange location were highest for Grandi at the first harvest (July 21; 1510 kg ha-1) and for Joey at the second harvest (July 28; 1280 kg ha-1) (Harvest Time by Cultivar interaction, P = 0.0010). Over the subsequent weeks of harvest, yields drastically declined (16 to 41% in 2021 and 27 to 47% in 2022 in Blacksburg; 52% to 91% in 2021 and 28% to 65% in 2022 in Orange, compared to the highest yield). Harvest timing is critical to achieving optimum seed yield, and it varies with cultivar, eco-physiographic location, and weather (e.g., rainfall). Fatty acids (FA) varied by cultivar, location, and harvest timing, but patterns of response were not consistent across FA. Gamma-linolenic (P ≤ 0.002) and oleic acids (P ≤ 0.023) were generally greater in Joey, with greater arachidic acid (P ≤ 0.013) concentrations in Grandi. Stearidonic acid concentrations declined with later harvest date in Orange location (P ≤ 0.0034). A third study aimed to measure hemp's response to different N rates and to determine the ability to predict plant N content and seed yield based on UAV-based multispectral imagery. Two hemp cultivars, 'Joey' and 'Grandi', were planted and five N rates (0, 60, 120, 180, 240 kg N ha-1) were tested in Blacksburg, Virginia in 2020, 2021, 2022. Aerial image acquisition occurred at three different growth stages in 2021 using dji M 300 drones mounted with multispectral sensors. Red/Blue index (R2=0.89), near-infrared (NIR) band (R2=0.84) and Enhanced vegetation index (EVI) (R2=0.81) were better predictors of N content in leaf samples than other vegetation indices that were evaluated. Green normalized difference vegetation index (GNDVI) was the better predictor of hemp seed yield (R2=0.58) than other evaluated vegetation indices. The seed yield of hemp was influenced (P ≤ 0.0177) by the N input in all three experimental years. In 2020, seed yield did not increase steadily with the increase of N rate; the highest seed yield, 1640 kg ha-1, was observed at 120 kg N ha-1. In 2021, maximum seed yield of 2500 kg ha-1 occurred at the maximum N rate (240 kg N ha-1). In 2022, a weak response to N rate was observed; maximum seed yield was 380 kg ha-1, again at 240 kg N ha-1. The overall growth of the hemp plants was affected by limited rainfall and weed pressures in 2022, leading to a significant reduction in seed yield. Response to N rate will vary depending on other factors such as available soil moisture during the growing season, weed pressure, and growing period. A fourth study examined the yield and nutritive value of three hemp cultivars, 'Grandi', 'Joey', and 'EcoFibre' as potential forage crops when harvested at weekly intervals in Blacksburg, VA. The greatest biomass and TDN yields across cultivars were 3.17 Mg ha-1 and 2.08 Mg ha-1 respectively, at two months after establishment in 2021. In the dry 2022 season, biomass and TDN yield were 1.9 Mg ha-1 and 1.03 Mg ha 1, respectively, two months after establishment. Hemp nutritive value measures varied by cultivar and harvest time (P < 0.05). Depending on the cultivar and harvest time, hemp plant biomass contained 13 to 32% CP, 22 to 45% NDF, 20 to 38% ADF, 4 to 9% lignin, and 52 to 80% TDN (cultivar × time interaction; P < 0.05). Hemp CP and TDN decreased gradually with maturation while ADF, NDF, and lignin increased (P<0.0001); however, this decline with maturity did not appear as severe as occurs with many other forages. These preliminary results suggest that hemp has the potential to be used as a forage crop. More research is needed to address hemp management and utilization, including field establishment and production, harvest timing for optimum tonnage and forage quality, and animal intake and performance studies. These findings provide new insights into industrial hemp production in the mid-Atlantic region of the United States. Optimal tillage practices, precise harvest timing, appropriate N fertility rates, and proper management techniques all are crucial for maximizing hemp seed and fiber production and quality. Furthermore, hemp shows promise as a forage crop with its adaptability and favorable nutritional properties. Further research is warranted to refine cultivation techniques, improve crop quality, and explore the full potential of hemp in various industries. / Doctor of Philosophy / Industrial hemp (Cannabis sativa L.) is a versatile crop with numerous applications in various industries, but much work must be done to understand crop responses to management practices and improve its potential as a crop for greater sustainability. In this study, we explored different aspects of hemp agronomic management. Hemp traditionally has been planted into tilled fields, which increases the chance for soil erosion. We examined whether hemp could be established without tillage and found that although tilled fields generally had great populations of taller plants; total biomass and seed yields were not as influenced by tillage. Our research suggests that with some tweaking, hemp can be successfully established without soil tillage. Next, we investigated the optimal time to harvest hemp for maximum seed yield. Harvesting at the right moment is crucial, as seeds ripen unevenly, resulting in varying quality and yield. By carefully timing the harvest, we can maximize seed yield and ensure high-quality seeds. Our cultivars were best harvested in a late July to early August time frame. Under favorable weather conditions, we observed seed yields ranging from 1,180 to 2,510 kilograms per hectare, depending on the hemp cultivar and location. Additionally, we studied the response of hemp seed yield to nitrogen fertilization rates. Nitrogen is an essential nutrient for plant growth, and we found that nitrogen significantly influenced seed yield, although the pattern of response varied by growing conditions. Over three years, seed yields ranged from 380 to 2,510 kilograms per hectare. Yields generally increased with nitrogen inputs but were highly affected by available moisture. Fertility studies help farmers determine the ideal nitrogen levels for their hemp crops, promoting healthy growth, maximizing yield, and minimizing environmental contamination. Within this study, we also evaluated aerial imagery technologies to monitor plant nitrogen status and we observed that remote sensing technologies are promising for building predictive nutrient management tools. Lastly, we explored the potential of hemp as a forage crop. Hemp plants have unique nutritional properties (e.g., protein, fatty acids) and can be used as feed for livestock. We investigated the best time to harvest hemp for maximum biomass and nutrient content, important factors for animal nutrition. Hemp plants grow rapidly and within two months after establishment they yielded up to 3.17 metric tons of biomass per hectare, with relatively high nutritional value. Overall, these studies provide valuable insights into hemp production, including the importance of tillage practices, optimal harvest timing, and appropriate nutrient management. By applying these findings, farmers can enhance their hemp cultivation techniques, resulting in higher yields, improved crop quality, and better environmental outcomes.
15

Multidisciplinary Evaluation Of No-Till Corn Grazing Systems In Mississippi

Manning, Dawn Holland 11 December 2009 (has links)
To ascertain potential ecological and landowner benefits of non-conventional agricultural systems, this project was designed to monitor cattle production and mourning dove (Zenaida macroura) utilization of land areas that allowed grazing cattle to harvest corn planted with no-till methods. In 2005-2008, study sites were located in four counties of MS, including four steer/heifer-grazed and harvested corn fields (SHS) and four conventionally-managed and combine-harvested corn fields (CHS). Vegetation characteristics, residual grain quantities, and use by doves were measured on SHS and CHS. Steer average daily gains (ADG), quality grades, and feedlot days were compared to traditional cattle production methods. Mourning dove numbers were greater on SHS than CHS during all study years and site locations (F=37.19, df=1, P=0.001). Biomass of residual corn kernels on the soil surface was greater on SHS compared to CHS in the fall (t=7.22, df=8, P= 0.001). Percentage coverage of grasses and forbs was greater in SHS than CHS in fall following harvest of corn with grass/forbs coverage being >10% in SHS and <5% in CHS. Throughout all seasons, percentage of bare ground was greater on CHS (50% - 80%) compared to SHS (1%-13%). Among average daily gains of grassed, corn-grazed, and feedlot fed cattle, a significant difference was detected (x2 = 8.45, df = 2, P = 0.002). Corn-grazed ADG was greater than bermudagrass-grazed but less than MS steers in the feedlot. Comparing conventionally-produced cattle of comparable characteristics to corned cattle used in my study, a significant decrease in feedlot days (Z =-1.83, P = 0.033) with no difference in quality grades of meat (Z = -0.65, P = 0.256) in no-till corn-grazed cattle was indicated. After offsetting costs of field preparation, fencing, and cattle maintenance, landowners using this production system can potentially increase income by at least $450/ha from fee/lease of corn fields for hunting and production of quality beef cattle.
16

Assessment of Effects of Long Term Tillage Practices on Soil Properties in Ohio

Burgos Hernandez, Tania D. 20 May 2015 (has links)
No description available.
17

Mulching and tillage effects on GHG emissions and properties of an Alfisol in Central Ohio

Ann Varughese, Merrie 19 December 2011 (has links)
No description available.
18

N fertilizer source and placement impacts nitrous oxide losses, grain yield and N use efficiency in no-till corn

Mendes Bastos, Leonardo January 1900 (has links)
Master of Science / Department of Agronomy / Charles W. Rice / Agricultural lands receiving N inputs are considered the primary source of N2O, a potent greenhouse gas. N fertilizer management has shown variable effects on both N2O losses and corn grain yield. The objectives of this study were to assess the impact of N source and placement on N2O emissions, fertilizer-induced emission factor (FIEF), corn grain yield, yield-scaled N2O emissions (YSNE) and N fertilizer recovery efficiency (NFRE). The experiment was conducted from 2013 through 2014 at the Agronomy North Farm located at Kansas State University, Manhattan, KS. The soil was a moderately well-drained Kennebec silt loam. The treatments were broadcast urea (BC-Urea), broadcast urea ammonium nitrate (UAN) (BC-UAN), broadcast coated urea (BC-CU), surface-band UAN (SB-UAN), subsurface-band UAN (SSB-UAN), subsurface-band UAN + nitrification inhibitor (SSB-UAN+I) and a 0 N control. In 2013, SSB- UAN emitted significantly more N2O (2.4 kg N2O-N ha-1), whereas control (0.3 kg ha-1) and BC- UAN (0.6 kg ha-1) emitted the least. In 2014, most treatments emitted between 3.3 and 2.5 kg N2O-N ha-1. Only SSB-UAN+I (1.03 kg ha-1) and control (0.26 kg ha-1) were significantly lower. The use of a nitrification inhibitor decreased N2O emissions by 62% and 55% in 2013 and 2014, respectively. BC treatments had cumulative emissions significantly higher in 2014 compared to 2013. Only SSB-UAN+I had a significantly lower FIEF (0.4%), and 2013 FIEF (0.68%) was significantly lower than that of 2014 (1.38%). In 2013, banded treatments had significantly higher grain yields (from 9.1 to 10.5 Mg ha-1), whereas in 2014 fewer differences among N treatments were observed, ranging from 7.2 to 8.6 Mg ha-1. Banded treatments had significantly lower grain yields in 2014 compared to 2013. Only BC-UAN and SSB-UAN+I had significantly lower YSNE, and 2013 had lower YSNE than 2014. In 2013, SSB-UAN had the greatest NFRE, whereas BC treatments had the lowest. In 2014, N treatments did not differ in NFRE. SSB-UAN and SSB-UAN+I had significantly lower NFRE values in 2014 compared to 2013. Fertilizer source and placement have the potential to mitigate N2O emissions and promote high yields and NFRE in corn, however, the response is dependent on the rainfall pattern after fertilizer application. The option of banding UAN without any additive promoted higher N2O losses on a year when precipitation was well distributed, but also enhanced grain yield and NFRE. On the other hand, under the same precipitation conditions, broadcasting N fertilizer promoted lower N2O losses, grain yield and NFRE, but those were all improved in a wet year. Therefore, the subsurface band placement would be the best option under a normal year, whereas broadcasting fertilizer would be the best option under a wetter year. Further, the use of NI with subsurface band UAN provides the most sustainable option, since the NI decreased N2O losses compared to UAN alone in both years. Further research should evaluate N source and placement combinations under different environments in order to better understand how they impact crop performance and the negative environmental aspects of N fertilization. It is important to test those treatments under different precipitation scenarios and look for trends that indicate the best N management option at the local level.
19

Soil aggregation and carbon sequestration following a single tillage event in no-till soils in a semi-arid environment

Asmus, Chad Donald January 1900 (has links)
Master of Science / Department of Agronomy / Charles W. Rice / The sequestration of atmospheric CO[subscript]2 into soil through no-till management is an economic and viable method for reducing greenhouse gases, but maintaining no-till practices are necessary to sequester C in the long-term. Our study focused on the effects of a single tillage operation on soil organic C and N and aggregation in no-till soils when no-till practices are immediately resumed after tillage. Three locations in western Kansas were selected that had been in continuous dryland no-till for at least 5 years – Wallace, Tribune, and Spearville. Tillage treatments were administered in 2004 and consisted of no-till (NT), disk plow (DP), sweep plow (SwP), and chisel plow (CP). Treatments were arranged in a randomized complete block design with four replications. Soil samples were taken at 0-5, 5-15, and 15-30 cm depths. Composite samples were taken from each block prior to tillage and tested for whole soil organic C and N. Further soil samples were collected in spring 2005 at approximately nine months after tillage (MAT) and again in fall 2005 at approximately 12 MAT and tested for whole soil organic C and N and aggregate size distribution. Bulk density was measured for each plot and depth prior to sampling at 12 MAT. Twelve MAT samples were also tested for aggregate-associated C and N. The DP tillage had a greater C concentration than NT and CP when averaged over depth and time, but C mass did not vary between tillage systems. Changes in whole soil C and N over time varied by location, but the differences were similar between tillage treatments. Tillage treatments DP and SwP also had a greater mass of macroaggregate (250-1000 [Mu]m) associated C relative to CP (but not to NT) for Wallace in the surface 0-5 cm at 12 MAT. No other differences between tillages in aggregate-associated C were observed. A single tillage event did not have a significant impact on aggregate size distribution. The greatest amount of aggregate-associated C and N existed in the large microaggregate (53-250 µm) fraction. Changes in aggregate distribution or aggregate-associated C or N did not directly correlate to changes in whole soil C and N. We therefore conclude that a single tillage operation using these implements will not result in a measurable loss in sequestered C over time for dryland soils in a semi-arid climate such as western Kansas.
20

Utilization of dry distillers grains and charcoal as nitrogen fertilizer in corn

Shroyer, Kyle J. January 1900 (has links)
Master of Science / Department of Agronomy / Scott A. Staggenborg / With the increase in bio-energy production there is also an increase in by-products. Without proper disposal, these by-products might cause future economic and/or ecological problems. Land application has potential as a disposal and/or nutrient cycling method if these by-products have nutritive value for agricultural crops. The purpose of the study was to compare the use of two by-products of bio-energy production, dry distillers grains (ethanol) and charcoal(pyrolysis), as fertilizer with urea in corn (Zea mays L.). The experiment consisted of four location-years in Kansas. Treatments were dry distiller’s grains (DDG) no-till and tilled for four location-years and char no-till and tilled for three location-years. No-till urea was used as a baseline for comparison at all location-years. The Nitrogen rates ranged from 45 to 180 kg N ha-1. All source material was spring applied before tillage and planting. The corn yields for DDGs and urea were the almost the same across tillage treatments and locations. For DDG no-till, DDG tilled, and urea, the rates at which to achieve the same yields were 97, 111, 78 kg N ha-1, respectively. Corn yields for char at all rates and tillage treatments were the same as no fertilizer. The char, because of immobilization or lack of decomposition, did not contribute to the nitrogen needs of the corn. Neither material showed any inhibitory or otherwise negative effects on the corn in terms of grain yield compared with the control. But both DDGs and char had to have large amounts of material applied to achieve the same amount of nitrogen as urea. Land application of DDGs and char has potential merit for disposal/nitrogen cycling with DDGs being preferred for its nitrogen contribution.

Page generated in 0.0246 seconds