Spelling suggestions: "subject:"coc"" "subject:"ooc""
51 |
Coping with permanent faults in NoCs by using adaptive strategies based on router design-level and routing algorithm-level / Cobrindo falhas permanentes em Redes intrachip usando técnicas adaptativas nos roteadores em um nível de projeto e em um nível de algoritmoConcatto, Caroline Martins January 2009 (has links)
Hoje em dia, as redes intra chip (NoC) são cada vez mais utilizadas como uma arquitetura de comunicação alternativa para sistemas complexos, pois estas permitem flexibilidade e desempenho da comunicação. Porém, o grande número de interconexões da rede, aliado à diminuição das dimensões dos transistores fabricados nas tecnologias nanométricas, fazem com que a NoC possa ter um grande número de falhas durante sua fabricação, ou por desgaste durante sua vida útil. Sabe-se que, em futuras tecnologias os circuitos integrados terão uma taxa de falhas permanentes de 20 a 30%. Entretanto, mesmo na presença de falhas, é desejável que a NoC permaneça funcionando corretamente. A partir do diagnóstico das falhas, a NoC deve ser capaz de buscar alternativas para manter a comunicação entre os núcleos, evitando os canais e os roteadores com falhas. O objetivo deste trabalho é propor mecanismos adaptativos de proteção contra falhas permanentes. Mesmo quando são adicionados componentes extras para a substituição em SoCs, a ocorrência de falhas permanentes na rede intrachip impede a substituição ou reparo de um componente no sistema intrachip. Portanto a tolerância a falhas na NoC será crucial para reduzir custo de manufatura, e aumentar o rendimento e o tempo de vida do circuito integrado. O mecanismo proposto é capaz de evitar falhas sabendo anteriormente, na fase de teste e diagnóstico, a localização especifica da falha. Portanto, as técnicas se adaptam em cada roteador para evitar as falhas permanentes, sempre buscando manter desempenho, aumentar o rendimento e a confiabilidade do sistema. / Nowadays, networks-on-chip (NoCs) have been used as an alternative communication architecture inside complex system on-chip. They offer better scalability and performance than the traditional bus. However, the growing number of interconnects that have to be inserted using smaller transistors means that NoCs have a growing number of faults, either from manufacturing or due to aging. In future systems-on-chip (SoCs), the fault rate will be around 20 to 30% of the contact and transistors of integrated circuits. Therefore, even in the presence of a fault, it is still desirable that NoCs properly work. The main idea of this work is to implement adaptive mechanisms to protect NoCs against permanent faults. The main advantage of such mechanism is to manage failures based on data from the testing and diagnosing phase. The mechanisms are adapted in each router in order to sustain performance, increasing the system yield and reliability even in the presence of failures. Even if one adds extra blocks for replacement, the occurrence of permanent faults in a NoC might preclude the replacement or repair of a faulty component within the SoC. In such case, fault-tolerant NoCs are able to reduce manufacturing costs, increase yield and the lifetime of the chip.
|
52 |
Coping with permanent faults in NoCs by using adaptive strategies based on router design-level and routing algorithm-level / Cobrindo falhas permanentes em Redes intrachip usando técnicas adaptativas nos roteadores em um nível de projeto e em um nível de algoritmoConcatto, Caroline Martins January 2009 (has links)
Hoje em dia, as redes intra chip (NoC) são cada vez mais utilizadas como uma arquitetura de comunicação alternativa para sistemas complexos, pois estas permitem flexibilidade e desempenho da comunicação. Porém, o grande número de interconexões da rede, aliado à diminuição das dimensões dos transistores fabricados nas tecnologias nanométricas, fazem com que a NoC possa ter um grande número de falhas durante sua fabricação, ou por desgaste durante sua vida útil. Sabe-se que, em futuras tecnologias os circuitos integrados terão uma taxa de falhas permanentes de 20 a 30%. Entretanto, mesmo na presença de falhas, é desejável que a NoC permaneça funcionando corretamente. A partir do diagnóstico das falhas, a NoC deve ser capaz de buscar alternativas para manter a comunicação entre os núcleos, evitando os canais e os roteadores com falhas. O objetivo deste trabalho é propor mecanismos adaptativos de proteção contra falhas permanentes. Mesmo quando são adicionados componentes extras para a substituição em SoCs, a ocorrência de falhas permanentes na rede intrachip impede a substituição ou reparo de um componente no sistema intrachip. Portanto a tolerância a falhas na NoC será crucial para reduzir custo de manufatura, e aumentar o rendimento e o tempo de vida do circuito integrado. O mecanismo proposto é capaz de evitar falhas sabendo anteriormente, na fase de teste e diagnóstico, a localização especifica da falha. Portanto, as técnicas se adaptam em cada roteador para evitar as falhas permanentes, sempre buscando manter desempenho, aumentar o rendimento e a confiabilidade do sistema. / Nowadays, networks-on-chip (NoCs) have been used as an alternative communication architecture inside complex system on-chip. They offer better scalability and performance than the traditional bus. However, the growing number of interconnects that have to be inserted using smaller transistors means that NoCs have a growing number of faults, either from manufacturing or due to aging. In future systems-on-chip (SoCs), the fault rate will be around 20 to 30% of the contact and transistors of integrated circuits. Therefore, even in the presence of a fault, it is still desirable that NoCs properly work. The main idea of this work is to implement adaptive mechanisms to protect NoCs against permanent faults. The main advantage of such mechanism is to manage failures based on data from the testing and diagnosing phase. The mechanisms are adapted in each router in order to sustain performance, increasing the system yield and reliability even in the presence of failures. Even if one adds extra blocks for replacement, the occurrence of permanent faults in a NoC might preclude the replacement or repair of a faulty component within the SoC. In such case, fault-tolerant NoCs are able to reduce manufacturing costs, increase yield and the lifetime of the chip.
|
53 |
Implementation of a Gigabit IP router on an FPGA platformBorslehag, Tobias January 2005 (has links)
The computer engineering group at Linköping University has parts of their research dedicated to networks-on-chip and components used in network components and terminals. This research has among others resulted in the SoCBUS NOC and a flow based network protocol processor. The main objective of this project was to integrate these components into an IP router with two or more Gigabit Ethernet interfaces. A working system has been designed and found working. It consists of three main components, the input module, the output module and a packet buffer. Due to the time constraint and the size of the project the packet buffer could not be designed to be as efficient as possible, thus reducing the overall performance. The SoCBUS also has negative impact on performance, although this could probably be reduced with a revised system design. If such a project is carried out it could use the input and output modules from this project, which connect to SoCBUS and can easily be integrated with other packet buffers and system designs.
|
54 |
Coping with permanent faults in NoCs by using adaptive strategies based on router design-level and routing algorithm-level / Cobrindo falhas permanentes em Redes intrachip usando técnicas adaptativas nos roteadores em um nível de projeto e em um nível de algoritmoConcatto, Caroline Martins January 2009 (has links)
Hoje em dia, as redes intra chip (NoC) são cada vez mais utilizadas como uma arquitetura de comunicação alternativa para sistemas complexos, pois estas permitem flexibilidade e desempenho da comunicação. Porém, o grande número de interconexões da rede, aliado à diminuição das dimensões dos transistores fabricados nas tecnologias nanométricas, fazem com que a NoC possa ter um grande número de falhas durante sua fabricação, ou por desgaste durante sua vida útil. Sabe-se que, em futuras tecnologias os circuitos integrados terão uma taxa de falhas permanentes de 20 a 30%. Entretanto, mesmo na presença de falhas, é desejável que a NoC permaneça funcionando corretamente. A partir do diagnóstico das falhas, a NoC deve ser capaz de buscar alternativas para manter a comunicação entre os núcleos, evitando os canais e os roteadores com falhas. O objetivo deste trabalho é propor mecanismos adaptativos de proteção contra falhas permanentes. Mesmo quando são adicionados componentes extras para a substituição em SoCs, a ocorrência de falhas permanentes na rede intrachip impede a substituição ou reparo de um componente no sistema intrachip. Portanto a tolerância a falhas na NoC será crucial para reduzir custo de manufatura, e aumentar o rendimento e o tempo de vida do circuito integrado. O mecanismo proposto é capaz de evitar falhas sabendo anteriormente, na fase de teste e diagnóstico, a localização especifica da falha. Portanto, as técnicas se adaptam em cada roteador para evitar as falhas permanentes, sempre buscando manter desempenho, aumentar o rendimento e a confiabilidade do sistema. / Nowadays, networks-on-chip (NoCs) have been used as an alternative communication architecture inside complex system on-chip. They offer better scalability and performance than the traditional bus. However, the growing number of interconnects that have to be inserted using smaller transistors means that NoCs have a growing number of faults, either from manufacturing or due to aging. In future systems-on-chip (SoCs), the fault rate will be around 20 to 30% of the contact and transistors of integrated circuits. Therefore, even in the presence of a fault, it is still desirable that NoCs properly work. The main idea of this work is to implement adaptive mechanisms to protect NoCs against permanent faults. The main advantage of such mechanism is to manage failures based on data from the testing and diagnosing phase. The mechanisms are adapted in each router in order to sustain performance, increasing the system yield and reliability even in the presence of failures. Even if one adds extra blocks for replacement, the occurrence of permanent faults in a NoC might preclude the replacement or repair of a faulty component within the SoC. In such case, fault-tolerant NoCs are able to reduce manufacturing costs, increase yield and the lifetime of the chip.
|
55 |
Thermal-aware and uniform priority with scaled routing for high-performance network-on-chipOkeke, Stanley 01 September 2017 (has links)
3D-NoC architectures are the amalgamation of the 3D integration (Die stacking of 3D-IC Technology) with the increased scalability found in NoC. Originally, it was proposed to tackle the problem of increasing the number of cores in the 2D plane which seems incompetent due to long distance interconnects.
This architecture is aimed to optimize performance, power consumption, achieve low latency and increase the network bandwidth. Nevertheless, as more dies were being stacked vertically, IC operating frequency increases and this leads to some thermal issues which include high power density which increases average temperature. In addition to that, longer heat dissipation path results in different heat dissipation in each layer of the NoC which worsen the situation. An increase in the overall power consumption increases the average temperature, reduces performance and reliability.
In this paper, an adaptive thermal-aware management scheme was proposed for 3D-NoCs, concentrating more on the hotspot regions in the network. This proposed protocol employs the thermal state of intermediate nodes and flits properties in a random uniform distributive way for packet routing. The proposed algorithm increases network availability and tends to distribute the temperature of the system evenly and uniformly within the network and making sure that packets are not forwarded to the hotspot node(s) and only flits with certain properties in the distribution are forwarded to the hotspot node(s). Before or during transmission, these two distributions must be calculated alongside the current node temperature to knowing which state of the distribution that node and flit belong to. The simulation shows this gave better performance in throughput and reliability of the network by reducing the number of hotspot nodes in the NoC. The proposed algorithm also reduces power consumption which is a function of temperature. Simulations show that our proposed algorithm reduces the total power/energy consumed by more than 59\% and throughput is improved by 69\% compared to a traditional XYZ routing. / Graduate
|
56 |
Conception d'un réseau sur puce optimisé en latence / Design of an optimized latency network on chipChatmen, Mohamed Fehmi 10 September 2016 (has links)
Afin de connecter les différents composants dans une puce, le réseau sur puce a supplanté le bus pour les applications complexes nécessitant une large bande passante. Plusieurs travaux de recherches ont essayé de développer ces réseaux. On évalue le réseau à l’aide de critères de performances tels que la latence moyenne, la surface en silicium requise, la puissance consommée et les qualités de services présentés. La topologie la plus adoptée par la plupart des travaux de recherche est la topologie MESH à 2 dimensions mais cette topologie a montré des insuffisances surtout dans le cas d’un réseau de taille limitée. Ces insuffisances pourraient être contournées par la nouvelle technologie des circuits intégrés à 3 dimensions. Toutefois cette technologie a aussi montré ses limites au niveau de la technologie de fabrication dû à l’emploi massif des TSV (Through SiliconVia) nécessaires à la communication inter- couches. Ces derniers ne peuvent être utilisés qu’en nombre bien limité. On a proposé, dans ce mémoire, une nouvelle topologie du réseau, basée sur les routeurs virtuels en deux versions. Elle est basée sur la notion des routeurs virtuels, pouvant jouer le même rôle qu’un réseau 3D mais avec moins de ressources et même avec une meilleure performance en termes de latence pour l’envoi du paquet de la source vers la destination. / To connect the various components in a chip, the network on chip supplanted the bus for complex applications requiring large bandwidth. Several research studies have tried to develop these networks. The network is evaluated based on performances criteria such as average latency, required silicon area, consumed power and the presented qualities of service. Most of these works adopted the 2 dimensions MESH topology but this topology showed deficiencies in the case of sized network. These shortcomings could be circumvented by the new technology of 3D integrated circuits. However, this technology has also shown its limits in terms of manufacturing technology due to the massive use of TSV (Through Silicon Via) necessary for the inter- layers communication. The latter could only be used in very limited numbers. It is suggested in this thesis, a new network topology, based on the virtual routers in two versions. It is based on the concept of virtual routers playing the same role as a 3D network but with fewer resources and even better performances in terms of latency
|
57 |
Návrh managementu monitorovacího centra on-line her / Design of Network Management Center for on-line GamesKáčer, Andrej January 2019 (has links)
The thesis focuses on the management and functionality of the Network Operations Center, whose function is to maintain optimal network operations on various platforms, media and communication channels. The department is in a company that develops AAA game titles. The first part defines the theoretical basis. The next section introduces the company together with the analysis of the functioning of the department and communication. The last part is devoted to the design of the organizational structure, which includes the process of creating a new job. The process involves the division of activities, the recruitment process and the economic appreciation itself.
|
58 |
Preevangelizační a evangelizační rozměr projektu Noc kostelů / Preevangelizational and evangelizational aspect of the project Night of ChurchesŠatánková, Radana January 2015 (has links)
The thesis investigates the Night of Churches schedules in selected parishes of the Prague Archdiocese in years 2011-2013. It also deals with the principles, procedures and methods of evangelization. The terms related to the above mentioned are defined. Additionally, part of the thesis aims to introduce the objectives and developments of the Night of Churches project not only in the Czech Republic but also abroad. The practical part of the work classifies three consecutive years of the event according to their characteristics and the outcome is subsequently compared and analysed with regard to the challenges that arise in front of the Church during pre-evangelization and evangelization. Keywords Night of Churches, church, preevangelization, evangelization
|
59 |
An Interconnection Network Topology Generation Scheme for Multicore SystemsPhanibhushana, Bharath 01 January 2013 (has links) (PDF)
Multi-Processor System on Chip (MPSoC) consisting of multiple processing cores connected via a Network on Chip (NoC) has gained prominence over the last decade. Most common way of mapping applications to MPSoCs is by dividing the application into small tasks and representing them in the form of a task graph where the edges connecting the tasks represent the inter task communication. Task scheduling involves mapping task to processor cores so as to meet a specified deadline for the application/task graph. With increase in system complexity and application parallelism, task communication times are tending towards task execution times. Hence the NoC which forms the communication backbone for the cores plays a critical role in meeting the deadlines. In this thesis we present an approach to synthesize a minimal network connecting a set of cores in a MPSoC in the presence of deadlines. Given a task graph and a corresponding task to processor schedule, we have developed a partitioning methodology to generate an efficient interconnection network for the cores. We adopt a 2-phase design flow where we synthesize the network in first phase and in second phase we perform statistical analysis of the network thus generated. We compare our model with a simulated annealing based scheme, a static graph based greedy scheme and the standard mesh topology. The proposed solution offers significant area and performance benefits over the alternate solutions compared in this work.
|
60 |
Reducing Cache Access Time in Multicore Architectures Using Hardware and Software TechniquesAvakian, Annie 27 September 2012 (has links)
No description available.
|
Page generated in 0.056 seconds