Spelling suggestions: "subject:"koether theorem"" "subject:"goether theorem""
1 |
Noether, partial noether operators and first integrals for systemsNaeem, Imran 21 April 2009 (has links)
The notions of partial Lagrangians, partial Noether operators and partial Euler-Lagrange
equations are used in the construction of first integrals for ordinary differential equations
(ODEs) that need not be derivable from variational principles. We obtain a Noetherlike
theorem that provides the first integral by means of a formula which has the same
structure as the Noether integral. However, the invariance condition for the determination
of the partial Noether operators is different as we have a partial Lagrangian and as a
result partial Euler-Lagrange equations. In order to investigate the effectiveness of the
partial Lagrangian approach, some models such as the oscillator systems both linear and
nonlinear, Emden and Ermakov-pinnery equations and the Hamiltonian system with two
degrees of freedom are considered in this work. We study a general linear system of
two second-order ODEs with variable coefficients. Note that, a Lagrangian exists for the
special case only but, in general, the system under consideration does not have a standard
Lagrangian. However, partial Lagrangians do exist for all such equations in the absence
of Lagrangians. Firstly, we classify all the Noether and partial Noether operators for the
case when the system admits a standard Lagrangian. We show that the first integrals
that result due to the partial Noether approach is the same as for the Noether approach.
First integrals are then constructed by the partial Noether approach for the general case
when there is in general no Lagrangian for the system of two second-order ODEs with variable coefficients. We give an easy way of constructing first integrals for such systems
by utilization of a partial Noether’s theorem with the help of partial Noether operators
associated with a partial Lagrangian.
Furthermore, we classify all the potential functions for which we construct first integrals
for a system with two degrees of freedom. Moreover, the comparison of Lagrangian and
partial Lagrangian approaches for the two degrees of freedom Lagrangian system is also
given.
In addition, we extend the idea of a partial Lagrangian for the perturbed ordinary differential
equations. Several examples are constructed to illustrate the definition of a partial Lagrangian in the approximate situation. An approximate Noether-like theorem which
gives the approximate first integrals for the perturbed ordinary differential equations
without regard to a Lagrangian is deduced.
We study the approximate partial Noether operators for a system of two coupled
nonlinear oscillators and the approximate first integrals are obtained for both resonant
and non-resonant cases. Finally, we construct the approximate first integrals for a system
of two coupled van der Pol oscillators with linear diffusive coupling. Since the system
mentioned above does not satisfy a standard Lagrangian, the approximate first integrals
are still constructed by invoking an approximate Noether-like theorem with the help of
approximate partial Noether operators. This approach can give rise to further studies
in the construction of approximate first integrals for perturbed equations without a
variational principle.
|
2 |
Aplicações das simetrias de Lie na dinâmica de sistemas mecânicos /Basquerotto, Cláudio Henrique Cerqueira Costa. January 2018 (has links)
Orientador: Samuel da Silva / Resumo: Os métodos envolvendo simetria têm grande importância para o estudo das equações diferenciais decorrentes de áreas como a matemática, física, engenharia entre muitas outras. A existência de simetrias em equações diferenciais pode gerar transformações em variáveis dependentes e independentes que podem facilitar a integração. Em especial, Sophus Lie desenvolveu no século XIX uma forma de extração de simetrias que podem ser usadas efetivamente para revelar as integrais primeiras, ou seja, as constantes de movimento, que muitas vezes podem estar escondidas. Estes invariantes podem em algumas situações ser identificados pelo teorema de Noether ou a partir de manipulações das próprias equações com transformações de Lie. Assim, nesta tese foi proposto utilizar as simetrias de Lie para aplicação em problemas da dinâmica de sistemas mecânicos. As simetrias de Lie são aplicadas em dois problemas clássicos, primeiro em um pêndulo oscilando em um aro rotativo e em seguida em um pião simétrico com movimento de precessão estacionária com um ponto fixo. No primeiro problema foi realizada uma redução de ordem para solução por quadraturas da equação de movimento. Já no segundo foram mostradas as relações entre os invariantes e as leis de conservação extraídas das simetrias de Lie. Uma outra análise foi realizada através da teoria de referencial móvel, mostrando a possibilidade de outras aplicações das simetrias de Lie. Uma das aplicações desta teoria, também é a redução de ordem das equações ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The methods involving symmetry are of great importance for the study of the di erential equations arising from areas such as mathematics, physics, engineering among many others. The existence of symmetries in di erential equations can generate transformations in dependent and independent variables that may be easier to integrate. In particular, Sophus Lie developed in the nineteenth century a form of extraction of symmetries that can be used e ectively to reveal the rst integrals, that is, the motion constants, which can often be hidden. These invariants can in some situations be identi ed by the Noether theorem or from manipulations of the equations themselves with Lie transformations. Thus, in this thesis it was proposed to use the Lie symmetries for application in problems of the dynamics of mechanical systems. The Lie symmetries are applied in two classic problems, rst in a bead on a rotating wire hoop and then in a symmetric top with stationary precession with a xed point. In the rst problem, a reduction of order of the equation of motion was performed by quadratures. In the second one, the relations between the invariants and the conservation laws extracted from the Lie symmetries were shown. Another analysis was performed through the theory of moving frames, showing the possibility of other applications of Lie symmetries. One of the applications of this theory is also the order reduction of the resulting di erential equations. Thus, moving frames were calculated for th... (Complete abstract click electronic access below) / Doutor
|
3 |
Aplicações das simetrias de Lie na dinâmica de sistemas mecânicos / Applications of Lie symmetries in the dynamics of mechanical systemsBasquerotto, Cláudio Henrique Cerqueira Costa 20 April 2018 (has links)
Submitted by Claudio Henrique Cerqueira Costa Basquerotto (cbasquerotto@ymail.com) on 2018-05-25T15:27:47Z
No. of bitstreams: 1
Tese_Basquerotto.pdf: 7598699 bytes, checksum: 5f0c350de78925517e7db6045e9c3749 (MD5) / Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-05-25T17:35:47Z (GMT) No. of bitstreams: 1
basquerotto_chc_dr_ilha.pdf: 7598699 bytes, checksum: 5f0c350de78925517e7db6045e9c3749 (MD5) / Made available in DSpace on 2018-05-25T17:35:47Z (GMT). No. of bitstreams: 1
basquerotto_chc_dr_ilha.pdf: 7598699 bytes, checksum: 5f0c350de78925517e7db6045e9c3749 (MD5)
Previous issue date: 2018-04-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os métodos envolvendo simetria têm grande importância para o estudo das equações diferenciais decorrentes de áreas como a matemática, física, engenharia entre muitas outras. A existência de simetrias em equações diferenciais pode gerar transformações em variáveis dependentes e independentes que podem facilitar a integração. Em especial, Sophus Lie desenvolveu no século XIX uma forma de extração de simetrias que podem ser usadas efetivamente para revelar as integrais primeiras, ou seja, as constantes de movimento, que muitas vezes podem estar escondidas. Estes invariantes podem em algumas situações ser identificados pelo teorema de Noether ou a partir de manipulações das próprias equações com transformações de Lie. Assim, nesta tese foi proposto utilizar as simetrias de Lie para aplicação em problemas da dinâmica de sistemas mecânicos. As simetrias de Lie são aplicadas em dois problemas clássicos, primeiro em um pêndulo oscilando em um aro rotativo e em seguida em um pião simétrico com movimento de precessão estacionária com um ponto fixo. No primeiro problema foi realizada uma redução de ordem para solução por quadraturas da equação de movimento. Já no segundo foram mostradas as relações entre os invariantes e as leis de conservação extraídas das simetrias de Lie. Uma outra análise foi realizada através da teoria de referencial móvel, mostrando a possibilidade de outras aplicações das simetrias de Lie. Uma das aplicações desta teoria, também é a redução de ordem das equações diferenciais resultantes. Com isso os referenciais móveis foram calculados para os problemas do pêndulo oscilando em um aro rotativo, pião simétrico e apresentando uma aplicação em um problema de vínculo não-holonomo. A partir disto foi possível reduzir a ordem das equações e obter a solução analítica das mesmas. Com isto, esta tese buscou mostrar a aplicação das simetrias de Lie em problemas de dinâmica de sistemas mecânicos através de uma linguagem acessível e que motive a outros engenheiros a se interessarem pelo tema. / The methods involving symmetry are of great importance for the study of the di erential equations arising from areas such as mathematics, physics, engineering among many others. The existence of symmetries in di erential equations can generate transformations in dependent and independent variables that may be easier to integrate. In particular, Sophus Lie developed in the nineteenth century a form of extraction of symmetries that can be used e ectively to reveal the rst integrals, that is, the motion constants, which can often be hidden. These invariants can in some situations be identi ed by the Noether theorem or from manipulations of the equations themselves with Lie transformations. Thus, in this thesis it was proposed to use the Lie symmetries for application in problems of the dynamics of mechanical systems. The Lie symmetries are applied in two classic problems, rst in a bead on a rotating wire hoop and then in a symmetric top with stationary precession with a xed point. In the rst problem, a reduction of order of the equation of motion was performed by quadratures. In the second one, the relations between the invariants and the conservation laws extracted from the Lie symmetries were shown. Another analysis was performed through the theory of moving frames, showing the possibility of other applications of Lie symmetries. One of the applications of this theory is also the order reduction of the resulting di erential equations. Thus, moving frames were calculated for the bead on a rotating wire hoop, symmetric top and showing an application in a nonholonomic problem. From this it was possible to reduce the order of the equations and to obtain the analytical solution of the same ones. So, this thesis sought to show the application of Lie symmetries in problems of dynamics of mechanical systems through an accessible language and that motivate other engineers to take an interest in the subject.
|
4 |
Generalized Abelian Gauge Theory & Generalized Global SymmetryHössjer, Emil January 2020 (has links)
We study Cheeger-Simons differential characters in order to define higher form U(1) gauge fields and their Wilson lines. We then go on to define generalized global symmetries. This is a topological formulation of symmetries which has interesting consequences when the charged operators extend through space. Our main source of such charged operators are the generalized Wilson lines. A higher form Noether theorem and a Ward identity are given for transformations of Wilson lines. As examples of quantum field theories with generalized symmetries we cover Sigma models, Maxwell theory and BF-theory. These are examples of Z, U(1) and Zn symmetries respectively. Finally we discuss spontaneous symmetry breaking for higher dimensional symmetries and a Goldstone theorem is provided. These massless Goldstone bosons are shown to have internal structure corresponding to non-zero spin. The photon is identified as the spin one Goldstone boson in QED. Our review of generalized symmetries is more formal than the ones in other papers. This makes various points explicit and leads to general selection rules. Many results of previous papers are reproduced in detail.
|
Page generated in 0.0757 seconds