• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 12
  • 12
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 106
  • 28
  • 19
  • 17
  • 16
  • 15
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Impacto hidrodinâmico vertical de corpos axissimétricos através de uma abordagem variacional. / Vertical hydrodynamic impact of axisymmetric bodies through a variational approach.

Santos, Flávia Milo dos 08 October 2013 (has links)
Do ponto de vista da hidrodinâmica clássica, o problema de impacto hidrodinâmico configura-se como um problema de contorno com fronteiras móveis cuja posição deve ser determinada simultaneamente à solução da equação de campo. Essa característica traz dificuldades para obtenção de soluções analíticas e numéricas. Nesse sentido, o presente trabalho propõe o desenvolvimento de um método numérico específico para analisar o problema de impacto hidrodinâmico de corpos sólidos rígidos contra a superfície livre da água. A solução da equação dinâmica não linear do problema de impacto depende da determinação do tensor de massa adicional a cada instante de tempo, o qual depende da posição e atitude do corpo no instante considerado. Um método variacional específico é empregado, através do qual os coeficientes de massa adicional são determinados com erro de segunda ordem, na posição considerada. Tal método é exemplo de técnicas numéricas dessingularizadas, através das quais o potencial de velocidade é aproximado em um espaço finito-dimensional formado por funções-teste derivadas de soluções potenciais elementares, tais como pólos, dipolos, anéis de dipolos, de vórtices, etc. O problema potencial de impacto hidrodinâmico, que se caracteriza pela dominância das forças de inércia, é formulado admitindo-se a superfície líquida como equipotencial, o que permite a analogia com o limite assintótico de frequência infinita do problema de radiação de ondas causada pelo movimento de corpos flutuantes. O método desenvolvido é então aplicado ao caso de impacto vertical de corpos axissimétricos, formulando o problema sob o chamado modelo de von Kármán generalizado (GvKM). Nesse modelo as condições de contorno na geometria exata do corpo são satisfeitas, porém os efeitos do empilhamento de água junto às raízes do jato, que se forma ao longo da intersecção com a superfície livre, não são considerados no caso geral. Resultados numéricos do coeficiente de massa adicional para uma família de esferoides são apresentados e tabulados para o pronto uso em análise e projeto. Além disso, considerações acerca da inclusão do efeito de empilhamento de água junto às raízes do jato, ou seja, da elevação da superfície livre são também feitas para o caso de esferas, fazendo uso de abordagens analíticas encontradas na literatura especializada. / In terms of classical hydrodynamics, the hydrodynamic impact problem is characterized as a boundary problem with moving boundary which position must be determined simultaneously with the solution of the field equation. This feature brings difficulties to get analytical and numerical solutions. In this sense, the purpose of this work is to present a variational method technique specifically designed for the hydrodynamic impact problem of axisymmetric rigid bodies on the free surface. The solution of the nonlinear dynamic equation of the impacting motion depends on the determination of the added mass tensor and its derivative with respect to time at each integration time step. This is done through a variational method technique that leads to a second-order error approximation for the added mass if a first-order error approximation is sought for the velocity potential. This method is an example of desingularized numerical techniques, through which the velocity potential is approximated in a sub-space of finite dimension, formed by trial functions derived from elementary potential solutions, such as poles, dipoles, and vortex rings, which are placed inside the body. The potential problem of hydrodynamic impact, characterized by the dominance of inertial forces, is here formulated by assuming the liquid surface as equipotential, what allows the analogy with the infinity frequency limit in the usual free surface oscillating floating body problem. The method is applied to the vertical hydrodynamic impact of axisymmetric bodies within the so-called Generalized von Kármán Model (GvKM). In such approach, the exact body boundary condition is full-filled and the wet correction is not taken into account. Numerical results for the added mass coefficient for a family of spheroids are presented. Moreover, considerations are made on the effects of the free surface elevation for the specific case of an impacting sphere, through analytical approaches.
72

Método dos elementos finitos generalizados para análise de estruturas em cascas de revolução / Generalized finite element method to analysis of structures in revolution shell

Mangini, Marlos 08 December 2006 (has links)
O presente trabalho está inserido no campo de estudo das cascas axissimétricas, tendo como objetivo a análise de seu comportamento estrutural mediante o desenvolvimento e aplicação de uma ferramenta numérica baseada no método dos elementos finitos generalizados. A utilização desse recurso é uma alternativa eficaz e difere do método dos elementos finitos convencional pela possibilidade de enriquecimento nodal das funções de aproximação. Como resultado pode-se dispensar o uso de redes muito refinadas. Com o intuito de evidenciar as vantagens do método adotado são apresentados exemplos comparando-se as soluções numéricas obtidas com soluções analíticas ou numéricas geradas com o do método dos elementos finitos convencional. Os resultados obtidos com um pequeno número de elementos finitos e com enriquecimento por funções polinomiais, mostraram-se convergentes já nos primeiros graus de enriquecimento. Desenvolve-se uma análise complementar de convergência baseada em estimativa de erro, mostrando que a metodologia adotada pode proporcionar melhores taxas de convergência em relação ao refino h quando predomina a regularidade da solução. A mesma análise aponta que a combinação dos refinos h e p pode levar a resultados mais precisos, com elevadas taxas de convergência, quando a solução (particularmente suas derivadas) apresentar regularidade menor. / The present dissertation is inserted in the field of study of the axisymmetric shells. The objective is to analyze the structural behavior by means of the development and application of a numerical tool based on the generalized finite element method. The use of this resource is an efficient alternative to the conventional finite element method for the possibility of nodal enrichment of the approach functions. Therefore one can avoid the use of very fine nets. In addition, in order to evidence the advantages of the adopted method, there are shown examples comparing the numerical solutions with analytical or numerical values generated with the conventional finite element method. The results obtained with a small number of elements, including enrichment by polynomial functions, had revealed convergence in the first degrees of enrichment. It is developed a complementary convergence analysis based on estimate of error, showing that the adopted methodology can provide better convergence ratios in relation to the h-refinement, in the cases where the regularity of the solution predominates. The same analysis shows that the combination of the refinement in its versions h and p can give more accurate results, by increasing convergence, when the solution (particularly its derivatives) presents lower regularity.
73

Solutions For Plane Strain And Axisymmetric Geomechanics Problems With Lower Bound Finite Elements Limit Analysis

Khatri, Vishwas N 03 1900 (has links)
The present thesis illustrates the application of the lower bound limit analysis in combination with finite elements and linear programming for obtaining the numerical solutions for various plane strain and axisymmetric stability problems in geomechanics. For the different plane strain problems dealt in the thesis, the existing formulation from the literature with suitable amendments, wherever required, was used. On the other hand for various axisymmetric problems, the available plane strain methodology was modified and a new formulation is proposed. In comparison to the plane strain analysis, the proposed axisymmetric formulation requires only three additional linear constraints to incorporate the presence of the hoop/circumferential stress (σθ). Several axisymmetric geotechnical stability problems are solved successfully to demonstrate the applicability of the proposed formulation. In the entire thesis, three noded triangular elements are used for carrying out the analysis. The nodal stresses are treated as basic unknowns and the stress discontinuities are employed along the interfaces of all the elements. To ensure that the finite element formulation leads to a linear programming problem, the Mohr-Coulomb yield surface is approximated by a polygon inscribed to the parent yield surface. For solving different problems, computer programs are developed in ‘MATLAB’. The variation of the bearing capacity factor Nγ with footing-soil interface roughness angle δ is obtained for different soil friction angles. The magnitude of Nγ is found to increase extensively with an increase in δ. With respect to variation in δ, the obtained values of Nγ were found to be generally smaller than the results available in literature. The effect of the footing width on the magnitude of Nγ has been examined for both smooth and rough strip footings. An iterative computational procedure is introduced to account for the dependency of φ on the mean normal stress ( σm). Two well defined φ- σm curves from literature, associated with two different relative densities, are being chosen for performing the computational analysis. The magnitude of Nγ is obtained for different footing widths, covering almost the entire range of model and field footing sizes. For a value of the footing width greater than approximately 0.2 m and 0.4 m, for a rough and smooth footing, respectively, the magnitude of Nγ varies almost linearly on a log-log scale. The bearing capacity factors Nc, Nq and Nγ are computed for a circular footing both with smooth and rough footing interface. The bearing capacity factors for a rough footing are found to be consistently greater than those with a smooth interface, especially with grater values of soil friction angle (φ). An encouraging comparison between the obtained results and those available from the literature is noted. Bearing capacity factor Nc for axially loaded piles in clays whose cohesion increases linearly with depth has been estimated numerically under undrained (φ = 0) condition. The variation of Nc with embedment ratio is obtained for several rates of the increase of soil cohesion with depth; a special case is also examined when the pile base was placed in the stiff clay stratum overlaid by a soft clay layer. It has been noticed that the magnitude of Nc reaches almost a constant value for embedment ratio approximately greater than unity. The bearing capacity factor Nγ has been computed for a rough conical footing placed over horizontal ground surface. The variation of Nγ with the cone apex (interior) angle (β), in a range of 30º - 180º, is obtained for different values of friction angle ( φ). For φ< 30º, the magnitude of Nγ is found to decrease continuously with an increase in β from 30º to 180º. On the other hand, for φ > 30º , the minimum magnitude of Nγ is found to occur generally between β = 120 and β = 150º. In all the cases, it has been noticed that the magnitude of Nγ becomes maximum for β = 30o. The vertical uplift resistance of circular plate anchors, embedded horizontally in a clayey stratum whose cohesion increases linearly with depth, has been obtained under undrained ( φ = 0) condition. The variation of the uplift factor (Fc) with changes in the embedment ratio (H/B) has been computed for several rates of the increase of soil cohesion with depth. It has been noted that in all the cases, the magnitude of Fc increases continuously with H/B up to a certain value of Hcr/B beyond which the uplift factor becomes essentially constant. The results obtained from the analysis are noted to compare quite well with those published in literature. From the investigation reported in this thesis, it is expected that the proposed axisymmetric formulation will be quite useful for solving various axisymmetric geotechnical stability problem in a rapid manner. The available plane strain formulation has also been found to yield quite satisfactory solutions even for a problem where the soil friction angle depends on the state of stress at a point.
74

Surface Tension and Adsorption Kinetics of Volatile Organic Amphiphiles in Aqueous Solution

Firooz, Abdolhamid January 2011 (has links)
Amphiphiles that possess a dual character, hydrophobic and hydrophilic, are employed in many chemical, pharmaceutical and biological applications. Amphiphile molecules that include a hydrophilic head and a hydrophobic tail can easily adsorb at a liquid/vapour interface, to reach to a minimum free energy and hence a most thermodynamically stable state. Surface tension is a key parameter for understanding such behavior of an amphiphile, or a surfactant. This thesis represents a comprehensive study on adsorption and surface tension of slightly volatile, organic amphiphiles in aqueous solution. Although for a vapor-liquid interface, adsorption from both liquid and vapor phases should be considered, they have been almost always considered exclusive of one another. When a volatile surfactant is dissolved in the liquid phase, it also applies a finite partial pressure in the vapor phase. Recently, dynamic surface tension experiments showed that adsorption from both sides of a vapor/liquid interface must be studied simultaneously. It is noted that surface tension phenomena are often dynamic, in particular when the surface under consideration is perturbed. With the newly discovered importance of adsorption from both sides of a vapor/liquid interface, one may have to ask the question: how dynamic surface tension is influenced and responding to the surface perturbation and environment changes, and whether both sides of the interface play a role in surface tension responses. In this research, axisymmetric drop shape analysis-profile (ADSA-P) is used for surface tension measurement. The experiments are performed in a closed chamber where the effects of surfactant concentrations of both liquid and vapor phases on the surface tension can be studied. The partial vapor pressure of surfactant is controlled with an environment solution containing the same surfactant as the sample solution. The environment solution is to facilitate adsorption from the vapor side of the interface by creating a surfactant vapor phase. The effects of surface perturbation, environment condition (i.e., temperature and pressure) and carbon chain length on the surface tension and adsorption kinetics are studied in detail. The surface tension response of 1-octanol aqueous solution to surface area perturbation is investigated. Upon surface compression, the surface tension decreases followed by a gradual increase back to the value prior to compression. On surface expansion, two categories of surface tension response are observed: First, when the change in surface area is smaller than 5%, the behavior similar to that of conventional surfactants is observed. The surface tension increases followed by a gradual decrease back to the value prior to expansion. Second, when the change in surface area is greater than 5%, and the drop concentration is sufficiently larger than the environment concentration, the surface tension initially slightly increases, but after a time delay, it sharply decreases, followed by a gradual increase back to the value prior to expansion. Previous studies showed that at steady-state condition a network of hydrogen bonding between surfactant and water molecules near the surface is created. The unique surface tension response after large expansion might be related to the momentarily destruction of this hydrogen bonding network and gradually making a new one. The effect of temperature on the surface tension and adsorption kinetics of 1-octanol, 1-hexanol and 1-butanol aqueous solutions is studied. The steady-state surface tension is found to decrease upon an increase in temperature, and a linear relationship is observed between them. The modified Langmuir equation of state and the modified kinetic transfer equation are used to model the experimental data of the steady-state and dynamic (time-dependent) surface tension, respectively. The equilibrium constants and adsorption rate constants are evaluated through a minimization procedure for temperatures ranging from 10°C to 35°C. From the steady-state modelling, the equilibrium constants for adsorption from vapor phase and liquid phase are found to increase with temperature. From the dynamic modelling, the adsorption rate constants for adsorption from vapor phase and liquid phase are found to increase with temperature too. The influence of carbon dioxide pressure on the surface tension and adsorption kinetics of the aforementioned surfactant aqueous solutions is investigated. To consider the effect of adsorption/desorption of the two species (surfactant and carbon dioxide) from both sides of a vapor/liquid interface on the surface tension, the modified Langmuir equation of state and the modified kinetic transfer equation are derived. The steady-state and dynamic surface tension data are modelled using the modified Langmuir equation of state and the modified kinetic transfer equation, respectively. The equilibrium constants and adsorption rate constants of surfactant and carbon dioxide are evaluated through a minimization procedure for CO2 pressures ranging from 0 to 690 KPa. From the steady-state modelling, the equilibrium parameters for surfactant and carbon dioxide adsorption from vapor phase and liquid phase are found unchanged for different pressures of carbon dioxide. From the dynamic modelling, the adsorption rate constants for surfactant and carbon dioxide are found to decrease with carbon dioxide pressure. The role of carbon chain length of amphiphiles in aqueous solution is also studied. It is illustrated that the equilibrium constants for adsorption from both sides of a vapor/liquid interface increase from 1-butanol to 1-octanol. The modelling results show that the ratio of the equilibrium constant for adsorption from vapor phase to the equilibrium constant for adsorption from liquid phase declines from 260 to 26 as the chain length is increased from 1-butanol to 1-octanol. Therefore, the contribution to adsorption from liquid phase augments as the chain length is increased. The adsorption kinetics for this group of short carbon chain surfactants is modelled using a kinetic transfer equation. The modelling results show that the adsorption rate constants from vapor phase and liquid phase (kag and kal) increase from 1-butanol to 1-octanol. Steady-state and dynamic modelling also reveals that the maximum surface concentration increases with carbon chain length. These results may be due to the higher hydrophobicity character of a surfactant molecule at longer carbon chain length.
75

Reynolds-averaged Navier-stokes Computations Of Jet Flows Emanating From Turbofan Exhausts

Kaya, Serpil 01 September 2008 (has links) (PDF)
This thesis presents the results of steady, Reynolds-averaged Navier-Stokes (RANS) computations for jet flow emanating from a generic turbofan engine exhaust. All computations were performed with commercial solver FLUENT v6.2.16. Different turbulence models were evaluated. In addition to turbulence modeling issues, a parametric study was considered. Different modeling approaches for turbulent jet flows were explained in brief, with specific attention given to the Reynolds-averaged Navier-Stokes (RANS) method used for the calculations. First, a 2D ejector problem was solved to find out the most appropriate turbulence model and solver settings for the jet flow problem under consideration. Results of one equation Spalart-Allmaras, two-equation standart k-&amp / #949 / , realizable k-&amp / #949 / , k-&amp / #969 / and SST k-&amp / #969 / turbulence models were compared with the experimental data provided and also with the results of Yoder [21]. The results of SST k-&amp / #969 / and Spalart-Allmaras turbulence models show the best agreement with the experimental data. Discrepancy with the experimental data was observed at the initial growth region of the jet, but further downstream calculated results were closer to the measurements. Comparing the flow fields for these different turbulence models, it is seen that close to the onset of mixing section, turbulence dissipation was high for models other than SST k-&amp / #969 / and Spalart-Allmaras turbulence models. Higher levels of turbulent kinetic energy were present in the SST k-&amp / #969 / and Spalart-Allmaras turbulence models which yield better results compared to other turbulence models. The results of 2D ejector problem showed that turbulence model plays an important role to define the real physics of the problem. In the second study, analyses for a generic, subsonic, axisymmetric turbofan engine exhaust were performed. A grid sensitivity study with three different grid levels was done to determine grid dimensions of which solution does not change for the parametric study. Another turbulence model sensitivity study was performed for turbofan engine exhaust analysis to have a better understanding. In order to evaluate the results of different turbulence models, both turbulent and mean flow variables were compared. Even though turbulence models produced much different results for turbulent quantities, their effects on the mean flow field were not that much significant. For the parametric study, SST k-&amp / #969 / turbulence model was used. It is seen that boundary layer thickness effect becomes important in the jet flow close to the lips of the nozzles. At far downstream regions, it does not affect the flow field. For different turbulent intensities, no significant change occurred in both mean and turbulent flow fields.
76

An Analysis of Self-similarity, Momentum Conservation and Energy Transport for an Axisymmetric Turbulent Jet through a Staggered Array of Rigid Emergent Vegetation

Allen, Jon Scott 16 December 2013 (has links)
Marsh vegetation is widely considered to offer protection against coastal storm damage, and vegetated flow has thus become a key area of hydrodynamic research. This study investigates the utility of simulated Spartina alterniora marsh vegetation as storm protection using an ADV measurement technique, and is the first to apply jet self-similarity analysis to characterize the overall mean and turbulent flow properties of a three-dimensional axisymmetric jet through a vegetated array. The mean axial flow of a horizontal axisymmetric turbulent jet is obstructed by three configurations of staggered arrays of vertical rigid plant stems. The entire experiment is repeated over five sufficiently high jet Reynolds number conditions to ensure normalization and subsequent collapse of data by nozzle velocity so that experimental error is obtained. All self-similarity parameters for the unobstructed free jet correspond to typical published values: the axial decay coefficient B is 5:8 +/- 0:2, the Gaussian spreading coefficient c is 85 +/- 5, and the halfwidth spreading rate eta_(1/2) is 0:093 +/- 0:003. Upon the introduction of vegetation, from partially obstructed to fully obstructed, B falls from 5:1+/- 0:2 to 4:2 +/- 0:2 and finally 3:7 +/-0:1 for the fully obstructed case, indicating that vegetation reduces axial jet velocity. Cross-sectionally averaged momentum for the unobstructed free jet is M=M0 = 1:05 +/- 0:07, confirming conservation of momentum. Failure of conservation of momentum is most pronounced in the fully obstructed scenario – M=M0 = 0:54 +/- 0:05. The introduction of vegetation increases spreading of the impinging jet. The entrainment coefficient alpha for the free jet case is 0.0575; in the fully obstructed case, alpha = 0:0631. Mean advection of mean and turbulent kinetic energy demonstrates an expected reduction in turbulence intensity within the vegetated array. In general, turbulent production decreases as axial depth of vegetation increases, though retains the bimodal profile of the free jet case; the fully vegetated case, however, exhibits clear peaks behind plant stems. Turbulent transport was shown to be unaffected by vegetation and appears to be primarily a function of axial distance from the jet nozzle. An analysis of rate of dissipation revealed that not only does the cumulative effect of upstream wakes overall depress the magnitude of spectral energy density across all wavenumbers but also that plant stems dissipate large anisotropic eddies in centerline streamwise jet flow. This study, thus, indicates that sparse emergent vegetation both reduces axial flow velocity and has a dissipative effect on jet flow. Typically, however, storm surge does not exhibit the lateral spreading demonstrated by an axisymmetric jet; therefore, the results of this study cannot conclusively support the claim that coastal vegetation reduces storm surge axial velocity.
77

Study of the dynamics of barred early type galaxies via numerical simulations

Lablanche, Pierre-Yves 04 April 2012 (has links) (PDF)
Since the 30's and Edwin Hubble's famous classification, galaxies are usually separated in twogroups : the late-type galaxies (LTGs) and the early-type galaxies (ETGs). The LTGs family ismainly made of spiral galaxies (S) while the ETGs family is composed of elliptical (E) and lenticular(S0) galaxies. A morphological study of all these galaxies revealed that around 60% of LTGs and45% of S0 present a bar. It has also been shown that, in the local Universe, galaxies fall into twobig groups : the blue cloud mostly populated by LTGs and the red sequence mainly made of ETGs.Several mechanisms are responsible for this distribution and the secular evolution is obviously animportant one to examine, sepcially in the context of bars, as an important number of studiesshowed the importance of bars in the dynamics and evolution of a galaxy.The goal of my thesis is to study the importance of the formation and ensued bar-drivenevolution influence on ETGs evolution. In that context, I have performed N-body simulations ofbarred (and unbarred) galaxies in order to investigate the following issues.First of all, I focused on the influence of a bar in a galaxy when modelling it with a dynamicalmodel assuming an axisymmetric mass distribution. As these kinds of models allow to determine themass-to-light ratio M/L, thus the dynamical mass of an observed galaxy, but also its inclinationand its anisotropy, it is important to evalute the consequence of the presence of a bar on theseparameters. I have shown that, depending on the galaxy inclination and the bar position angle,M/L is most of the time biased and overestimated, and this can be up to 25%. The size andstrength of the bar also seem to be important factors but a deeper study has to be done to quantifythis preliminary result.In a second step, I have studied the role of bars on the mass and metallicity redistributionsin a lenticular galaxy. I confirmed that the presence of a bar, due to its influence on its hostsystem dynamics, flattens pre-existing metallicity gradients. Moreover, I showed that the degree offlattening and the position of affected regions are directly correlated with the bar structure and thelocation of the dynamical resonances. Nonetheless, this dynamical effect cannot explain the varietyof observed ages and metallicity gradients. The consequences of a barred gravitational potentialon the gas dynamics and the stellar formation should therefore be investigated. This is the topicof the last set of numerical simulations produced which will allow to better understand the globalinfluence a bar has on the secular evolution of ETGs.
78

Surface Tension and Adsorption Kinetics of Volatile Organic Amphiphiles in Aqueous Solution

Firooz, Abdolhamid January 2011 (has links)
Amphiphiles that possess a dual character, hydrophobic and hydrophilic, are employed in many chemical, pharmaceutical and biological applications. Amphiphile molecules that include a hydrophilic head and a hydrophobic tail can easily adsorb at a liquid/vapour interface, to reach to a minimum free energy and hence a most thermodynamically stable state. Surface tension is a key parameter for understanding such behavior of an amphiphile, or a surfactant. This thesis represents a comprehensive study on adsorption and surface tension of slightly volatile, organic amphiphiles in aqueous solution. Although for a vapor-liquid interface, adsorption from both liquid and vapor phases should be considered, they have been almost always considered exclusive of one another. When a volatile surfactant is dissolved in the liquid phase, it also applies a finite partial pressure in the vapor phase. Recently, dynamic surface tension experiments showed that adsorption from both sides of a vapor/liquid interface must be studied simultaneously. It is noted that surface tension phenomena are often dynamic, in particular when the surface under consideration is perturbed. With the newly discovered importance of adsorption from both sides of a vapor/liquid interface, one may have to ask the question: how dynamic surface tension is influenced and responding to the surface perturbation and environment changes, and whether both sides of the interface play a role in surface tension responses. In this research, axisymmetric drop shape analysis-profile (ADSA-P) is used for surface tension measurement. The experiments are performed in a closed chamber where the effects of surfactant concentrations of both liquid and vapor phases on the surface tension can be studied. The partial vapor pressure of surfactant is controlled with an environment solution containing the same surfactant as the sample solution. The environment solution is to facilitate adsorption from the vapor side of the interface by creating a surfactant vapor phase. The effects of surface perturbation, environment condition (i.e., temperature and pressure) and carbon chain length on the surface tension and adsorption kinetics are studied in detail. The surface tension response of 1-octanol aqueous solution to surface area perturbation is investigated. Upon surface compression, the surface tension decreases followed by a gradual increase back to the value prior to compression. On surface expansion, two categories of surface tension response are observed: First, when the change in surface area is smaller than 5%, the behavior similar to that of conventional surfactants is observed. The surface tension increases followed by a gradual decrease back to the value prior to expansion. Second, when the change in surface area is greater than 5%, and the drop concentration is sufficiently larger than the environment concentration, the surface tension initially slightly increases, but after a time delay, it sharply decreases, followed by a gradual increase back to the value prior to expansion. Previous studies showed that at steady-state condition a network of hydrogen bonding between surfactant and water molecules near the surface is created. The unique surface tension response after large expansion might be related to the momentarily destruction of this hydrogen bonding network and gradually making a new one. The effect of temperature on the surface tension and adsorption kinetics of 1-octanol, 1-hexanol and 1-butanol aqueous solutions is studied. The steady-state surface tension is found to decrease upon an increase in temperature, and a linear relationship is observed between them. The modified Langmuir equation of state and the modified kinetic transfer equation are used to model the experimental data of the steady-state and dynamic (time-dependent) surface tension, respectively. The equilibrium constants and adsorption rate constants are evaluated through a minimization procedure for temperatures ranging from 10°C to 35°C. From the steady-state modelling, the equilibrium constants for adsorption from vapor phase and liquid phase are found to increase with temperature. From the dynamic modelling, the adsorption rate constants for adsorption from vapor phase and liquid phase are found to increase with temperature too. The influence of carbon dioxide pressure on the surface tension and adsorption kinetics of the aforementioned surfactant aqueous solutions is investigated. To consider the effect of adsorption/desorption of the two species (surfactant and carbon dioxide) from both sides of a vapor/liquid interface on the surface tension, the modified Langmuir equation of state and the modified kinetic transfer equation are derived. The steady-state and dynamic surface tension data are modelled using the modified Langmuir equation of state and the modified kinetic transfer equation, respectively. The equilibrium constants and adsorption rate constants of surfactant and carbon dioxide are evaluated through a minimization procedure for CO2 pressures ranging from 0 to 690 KPa. From the steady-state modelling, the equilibrium parameters for surfactant and carbon dioxide adsorption from vapor phase and liquid phase are found unchanged for different pressures of carbon dioxide. From the dynamic modelling, the adsorption rate constants for surfactant and carbon dioxide are found to decrease with carbon dioxide pressure. The role of carbon chain length of amphiphiles in aqueous solution is also studied. It is illustrated that the equilibrium constants for adsorption from both sides of a vapor/liquid interface increase from 1-butanol to 1-octanol. The modelling results show that the ratio of the equilibrium constant for adsorption from vapor phase to the equilibrium constant for adsorption from liquid phase declines from 260 to 26 as the chain length is increased from 1-butanol to 1-octanol. Therefore, the contribution to adsorption from liquid phase augments as the chain length is increased. The adsorption kinetics for this group of short carbon chain surfactants is modelled using a kinetic transfer equation. The modelling results show that the adsorption rate constants from vapor phase and liquid phase (kag and kal) increase from 1-butanol to 1-octanol. Steady-state and dynamic modelling also reveals that the maximum surface concentration increases with carbon chain length. These results may be due to the higher hydrophobicity character of a surfactant molecule at longer carbon chain length.
79

Development Of A Navier-stokes Solver For Multi-block Applications

Erdogan, Erinc 01 September 2004 (has links) (PDF)
A computer code is developed using finite volume technique for solving steady twodimensional and axisymmetric compressible Euler and Navier-Stokes equations for internal flows by &ldquo / multi-block&rdquo / technique. For viscous flows, both laminar and turbulent flow properties can be used. Explicit one step second order accurate Lax-Wendroff scheme is used for time integration. Inviscid solutions are verified by comparing the results of test cases of a support project which was supported by ONERA/France for Turkey T-108, named &ldquo / 2-D Internal Flow Applications for Solid Propellant Rocket Motors&rdquo / . For laminar solutions, analytical flat plate solution is used for planar case and theoretical pipe flow solution is used for axisymmetric case for verification. Prandtl turbulent flow analogy is used in a flat plate solution to verify the turbulent viscosity calculation. The test cases solved with single-block code are compared with the ones solved with multi-block technique to verify the multi-block algorithm and good similarity is observed between single-block solutions and multi-block solutions. For the burning simulation of propellant of Solid Propellant Rocket Motors, injecting boundary is used. Finally, a segmented solid propellant rocket motor case is solved to show the multi-block algorithm&rsquo / s flexibility in solving complex geometries.
80

An?lise de estruturas de superf?cie delgadas axissim?tricas via m?todo dos elementos finitos com utiliza??o de elemento retil?neo / Analysis of thin bidimensional axisymmetric structures via finite element method using atraight element

Bezerra, Paulo Henrique Ara?jo 13 June 2013 (has links)
Made available in DSpace on 2014-12-17T14:48:14Z (GMT). No. of bitstreams: 1 PauloHAB_DISSERT.pdf: 1409885 bytes, checksum: 3900b04b228655de639503902ee4b7f1 (MD5) Previous issue date: 2013-06-13 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The present work deals with the linear analysis of bi-dimensional axisymmetric structures, through development and implementation of a Finite Element Method code. The structures are initially studied alone and afterwards compatibilized into coupled structures, that is, assemblages, including tanks and pressure vessels. Examples are analysed and, in order to prove accuracy, the results were compared with those furnished by the analytical solutions / O presente trabalho aborda a an?lise linear de estruturas de superf?cie axissim?tricas atrav?s do desenvolvimento e implementa??o de um c?digo computacional baseado no M?todo dos Elementos Finitos. Inicialmente, as estruturas s?o estudadas de maneira isolada e, em seguida, compatibilizadas de modo a formar estruturas acopladas, como reservat?rios e vasos de press?o. Exemplos de aplica??o, com diferentes tipos de solicita??o e condi??es de vincula??o, s?o apresentados e os resultados obtidos pelo c?digo desenvolvido s?o comparados a valores anal?ticos

Page generated in 0.067 seconds