Spelling suggestions: "subject:"oon genomic"" "subject:"soon genomic""
291 |
Analysis of gene expression in barley upon aphid attackRicherioux, Nicolas January 2007 (has links)
<p>Since plants can not escape their predators by walking, they use some other defense systems, like induction or repression of defense genes. A microarray experiment performed with barley attacked by the bird cherry-oat aphid (Rhopalosiphum padi), led to the hypothesis that contig 16360 (similar to ser/thr kinases) could be linked with the resistance of barley against R. padi, and contig 6519 (similar to WIR 1A) with the susceptibility. Time course experiments showed that contig16360 and AJ250283 (similar to BCI-4) are almost induced in the same way, each, by two different aphids (R. padi and Metopolophium dirhodum). Genomic PCR was used to test the hypothesis that when plants have the gene for contig 16360, they are more likely to be resistant against aphid attack, and when plants have the gene for contig 6519, they are more likely to be susceptible. This test was performed with 69 barley lines: wild, commercial or breeding lines. Results were that the presence of WIR 1A gene has no correlation with the susceptibility, while presence of ser/thr kinase seems to be correlated with resistance.</p>
|
292 |
Genomic and Molecular Analysis of the Exopolysaccharide Production in the Bacterium <i>Thauera aminoaromatica</i> MZ1TJiang, Ke 01 May 2011 (has links)
Thauera aminoaromatica MZ1T is an exopolysaccharide (EPS)-producing Gram negative bacterium isolated from the wastewater treatment plant of a major industrial chemical manufacturer as the causal agent for poor sludge dewatering. It shares common features with other known Thauera spp. (i.e. Thauera aromatica, and Thauera selenatis), being capable of degrading aromatic compounds anaerobically and using acetate and succinate as carbon sources. It is unique among the Thauera spp. in its production of abundant EPS which results in viscous bulking and poor sludge dewaterability. In this respect, it is similar to Azoarcus sp. EbN1 and BH72. Thaueran is the proposed name for EPS produced by MZ1T for research purpose.
The focus of this research is to fully characterize the microorganism and identify and characterize the genes responsible for thaueran synthesis and export through bioinformatics, transposon mutagenesis, gene clone and expression, reverse transcriptase quantitative real time PCR, and genome sequencing and annotation. Ultimately, this knowledge will contribute to control of viscous bulking and sludge dewatering problems. However, a broader range of important environmental biotechnical processes may be forthcoming from understanding thaueran synthesis. They may include thaueran remedial solutions for heavy metal and radionuclide immobilization, anaerobic carbon channeling and sequestration, greenhouse gas mitigation through acetate incorporation into thaueran, and novel applications such as thaueran-mediated wound healing.
Sequencing of MZ1T genome has been accomplished through collaboration with the Joint Genome Institute (JGI). The genome size is 4.5 Mbp, GC content is 68.3%, and there are 4,092 protein coding genes. Three putative thaueran gene clusters were found within the genome. One tight cluster with a size of 20.67kb encoding 14 genes may contain most necessary genes for thaueran formation and export. Another two clusters are loosely organized. Through transposon mutagenesis, mutants not producing abundant thaueran and not flocculating have been obtained and verified, and were further used in reverse transcriptase quantitative real time PCR to compare the differential expression levels of the presumable EPS genes among mutants, wild type MZ1T and under different growth conditions. The results indicated a correlation of the expression level of the test genes and the abundance of EPS.
|
293 |
Molecular Insights into Kcnq1ot1 Noncoding Antisense RNA Mediated Long Range Transcriptional Gene SilencingPandey, Radha Raman January 2008 (has links)
Non-coding antisense RNAs have been implicated in the epigenetic silencing of individual gene as well as chromosomal domains. While silencing of the overlapping gene by antisense RNAs has been well investigated, their functional role in silencing of chromosomal domains remains enigmatic. To elucidate mechanisms underlying the non-coding RNA mediated epigenetic silencing of chromosomal domains, we have chosen an antisense non-coding RNA, Kcnq1ot1, as a model system. Previously, a functional role of Kcnq1ot1 RNA and/or its transcriptional process has been implicated in silencing of multiple genes in the Kcnq1 imprinted cluster. However, these studies could not rule out the mechanisms involving other than Kcnq1ot1 RNA. Furthermore, it was also unclear how the Kcnq1ot1 promoter escapes silencing when its encoded RNA is capable of silencing flanking genes in cis. We have shown that NF-Y transcription factor plays a central role in the Kcnq1ot1 promoter activity, and that mutation of the NF-Y binding sites not only resulted in loss of silencing of flanking genes but also the ability of the Kcnq1ot1 promoter to protect against repressive chromatin marks, indicating that NF-Y maintains transcription-competent chromatin at the promoter through resisting the strong silencing effects of Kcnq1ot1 RNA. The Kcnq1ot1 RNA is an RNA Polymerase II encoded 91 kb long moderately stable nuclear transcript. We have demonstrated that it is the RNA not the act of transcription responsible for silencing and that the degree of silencing was proportional to the length of Kcnq1ot1 RNA. The kinetics of heterochromatin formation in relation to Kcnq1ot1 transcription revealed that overlapping gene was silenced initially by occlusion of basal transcription machinery and heterochromatin formation, whereas nonoverlapping gene was silenced subsequently by Kcnq1ot1-mediated heterochromatin spreading. This transcriptional silencing by Kcnq1ot1 RNA is mediated by an 890 bp region through promoting its interaction with the chromatin. Interestingly, we show that Kcnq1ot1 RNA establishes heterochromatin structures in a lineage-specific fashion by interacting with chromatin and chromatin remodelling complexes such as G9a and PRC2 complexes. More importantly, one of the parental chromosomes comprising Kcnq1 domain always found in the vicinity of perinucleolar region. Based on these data we proposed a mechanism whereby Kcnq1ot1 RNA establishes transcriptional silencing through recruitment of chromatin remodelling machinery and the maintenance of silencing achieved via targeting to the perinucleolar region.
|
294 |
Analysis of gene expression in barley upon aphid attackRicherioux, Nicolas January 2007 (has links)
Since plants can not escape their predators by walking, they use some other defense systems, like induction or repression of defense genes. A microarray experiment performed with barley attacked by the bird cherry-oat aphid (Rhopalosiphum padi), led to the hypothesis that contig 16360 (similar to ser/thr kinases) could be linked with the resistance of barley against R. padi, and contig 6519 (similar to WIR 1A) with the susceptibility. Time course experiments showed that contig16360 and AJ250283 (similar to BCI-4) are almost induced in the same way, each, by two different aphids (R. padi and Metopolophium dirhodum). Genomic PCR was used to test the hypothesis that when plants have the gene for contig 16360, they are more likely to be resistant against aphid attack, and when plants have the gene for contig 6519, they are more likely to be susceptible. This test was performed with 69 barley lines: wild, commercial or breeding lines. Results were that the presence of WIR 1A gene has no correlation with the susceptibility, while presence of ser/thr kinase seems to be correlated with resistance.
|
295 |
Growth and Behaviour : Epigenetic and Genetic Factors Involved in Hybrid DysgenesisShi, Wei January 2005 (has links)
In mammals, the most frequently observed hybrid dysgenesis effects are growth disturbances and male sterility. Profound defects in placental development have been described and our work on hybrids in genus Mus has demonstrated putative hybrid dysgenesis effects that lead to defects in lipid homeostasis and maternal behavior. Interestingly, mammalian interspecies hybrids exhibit strong parent-of-origin effects in that offspring of reciprocal matings, even though genetically identical, frequently exhibit reciprocal phenotypes. Recent studies have provided strong link between epigenetic regulation and growth, behavior and placental development. Widespread disruption of genomic imprinting has been described in hybrids between closely related species of the genus Peromyscus. The studies presented in this thesis aim to investigate the effects of disrupted epigenetics states on altered growth, female infanticide and placental dysplasia observed in Mus hybrids. We showed that loss-of-imprinting (LOI) of a paternally expressed gene, Peg1, was correlated with increased body weight of F1 hybrids. Furthermore, we investigated whether LOI of Peg1 in F1 females would interfere with maternal behavior. A subset of F1 females indeed exhibited highly abnormal maternal behavior in that they rapidly attacked and killed the pups. By microarray hybridization, a large number of differentially expressed genes in the infanticidal females as compared to normally behaving females were identified. In addtion to Peg1 LOI, we studied allelic expression of numerous imprinted genes in adult Mus interspecies hybrids. In contrast to the study from Peromyscus, patterns of LOI were not consistent with a direct influence of altered expression levels of imprinted genes on growth. Finally, we investigated the allelic interaction between an X-linked locus and a paternally expressed gene, Peg3, in placental defects in Mus hybrids. This study further strengthened the notion that divergent genetic and epigenetic mechanisms may be involved in hybrid dysgenesis in diverse groups of mammals.
|
296 |
Long-range Control of Gene Expression by Imprinting Control Regions During Development and NeoplasiaThakur, Noopur January 2005 (has links)
Genomic imprinting is an epigenetic phenomenon by which a subset of genes is expressed in a parent of origin specific manner. Most of the imprinted genes are located in clusters. Genetic evidences suggest that genes in imprinted clusters are regulated by Imprinting Control Regions (ICRs). To elucidate the mechanisms by which the imprinting is maintained in clusters, we have chosen a well characterized cluster at the distal end of mouse chromosome 7. This cluster contains 15 imprinted genes and they have been shown to be regulated by H19 and Kcnq1 ICRs. The mouse H19 ICR, which is shown to have a chromatin insulator function, is implicated in the regulation of H19 and Igf2 genes by interacting with the CTCF protein. It has been documented that CTCF is also involved in the maintenance of differential methylation at the ICR. In this investigation we demonstrated that CTCF maintained differential methylation is lost when we subjected the ICR containing episomal plasmids to de novo methylation machinery of the human choriocarcinoma cell line, JEG3, suggesting that the H19 ICR looses its methylation privilege property under neoplastic conditions. The Kcnq1 ICR has been implicated in the regulation of 11 imprinted genes. The Kcnq1 ICR is methylated on the active maternal allele but unmethylated on the inactive paternal allele and overlaps an oppositely oriented and paternally expressed gene known as Kcnq1ot1. In this investigation, we documented that the Kcnq1 ICR controls the imprinting of neighboring genes by behaving as a bidirectional silencer and that this function is regulated by antisense RNA Kcnq1ot1. Furthermore, we have documented that duration of antisense transcription plays a critical role in the antisense RNA- mediated silencing. In conclusion, this thesis provides more insights into the complex mechanistic aspects by which ICRs, control imprinting of genes in clusters during development and neoplasia.
|
297 |
Long Noncoding RNA Mediated Regulation of Imprinted GenesMohammad, Faizaan January 2010 (has links)
Genomic imprinting is an epigenetic phenomenon that causes a subset of mammalian genes to be expressed from only one allele in a parent-of-origin manner. The defects in the imprinting regulation result in disorders that affect development, growth and metabolism. We have used the Kcnq1 imprinted cluster as a model to understand the mechanism of imprinted gene regulation. The imprinting at the Kcnq1 locus is regulated by a long noncoding RNA, Kcnq1ot1, whose transcription on the paternal chromosome is associated with the silencing of at least eight neighboring genes. By destabilizing Kcnq1ot1 in an episomal system, we have conclusively shown that it is the RNA and not the process of transcription that is required for the gene silencing in cis. Kcnq1ot1 RNA interacts with the chromatin modifying enzymes such as G9a and Ezh2 and recruits them to imprinted genes to establish repressive chromatin compartment and gene silencing. Using the episomal system, we have identified an 890 bp silencing domain (SD) at the 5’ end of Kcnq1ot1 RNA, which is required for silencing of neighboring reporter genes. The deletion of the SD in the mouse resulted in the relaxation of imprinting of ubiquitously imprinted genes (Cdkn1c, Kcnq1, Slc22a18, and Phlda2) as well as reduced DNA methylation over the somatic DMRs associated with the ubiquitously imprinted genes. Moreover, Kcnq1ot1 RNA interacts with Dnmt1 and recruits to the somatic DMRs and this recruitment was significantly affected in the SD mutant mice. By using a transgenic mouse, we have conditionally deleted Kcnq1ot1 promoter at different developmental stages and demonstrated that Kcnq1ot1 maintains imprinting of the ubiquitously imprinted genes by regulating DNA methylation over the somatic DMRs. Kcnq1ot1 is dispensable for the maintenance of repressive histone marks and the imprinting of placental-specific imprinted genes (Tssc4 and Osbpl5). In conclusion, we have described the mechanisms by which Kcnq1ot1 RNA establishes and maintains expression of multiple imprinted genes in cis.
|
298 |
PELICAN : a PipELIne, including a novel redundancy-eliminating algorithm, to Create and maintain a topicAl family-specific Non-redundant protein databaseAndersson, Christoffer January 2005 (has links)
The increasing number of biological databases today requires that users are able to search more efficiently among as well as in individual databases. One of the most widespread problems is redundancy, i.e. the problem of duplicated information in sets of data. This thesis aims at implementing an algorithm that distinguishes from other related attempts by using the genomic positions of sequences, instead of similarity based sequence comparisons, when making a sequence data set non-redundant. In an automatic updating procedure the algorithm drastically increases the possibility to update and to maintain the topicality of a non-redundant database. The procedure creates a biologically sound non-redundant data set with accuracy comparable to other algorithms focusing on making data sets non-redundant
|
299 |
Genomic Detection Using Sparsity-inspired ToolsJanuary 2011 (has links)
Genome-based detection methods provide the most conclusive means for establishing the presence of microbial species. A prime example of their use is in the detection of bacterial species, many of which are naturally vital or dangerous to human health, or can be genetically engineered to be so. However, current genomic detection methods are cost-prohibitive and inevitably use unique sensors that are specific to each species to be detected. In this thesis we advocate the use of combinatorial and non-specific identifiers for detection, made possible by exploiting the sparsity inherent in the species detection problem in a clinical or environmental sample. By modifying the sensor design process, we have developed new molecular biology tools with advantages that were not possible in their previous incarnations. Chief among these advantages are a universal species detection platform, the ability to discover unknown species, and the elimination of PCR, an expensive and laborious amplification step prerequisite in every molecular biology detection technique. Finally, we introduce a sparsity-based model for analyzing the millions of raw sequencing reads generated during whole genome sequencing for species detection, and achieve significant reductions in computational speed and high accuracy.
|
300 |
The cost of longevity: loss of sexual function in natural clones of Populus tremuloidesAlly, Dilara 05 1900 (has links)
Most clonal plants exhibit a modular structure at multiple levels. At the level of the organs, they are characterized by functional modules, such as, internodes, leaves, branches. At the level of the genetic individual (clone or genet), they possess independent evolutionary and physiological units (ramets). These evolutionary units arise through the widespread phenomenon of clonal reproduction, achieved in a variety of ways including rhizomes, stolons, bulbils, or lateral roots. The focus of this study was Populus tremuloides, trembling aspen, a dioecious tree that reproduces sexually by seed and asexually through lateral roots. Local forest patches in western populations of Populus tremuloides consisted largely of multiple genotypes. Multi-clonal patches were dominated by a single genotype, and in one population (Riske Creek) we found several patches (five out of 17) consisting of a single genotype. A second consequence of modularity is that during the repeated cycle of ramet birth, development and death, somatic mutations have the opportunity to occur. Eventually, the clone becomes a mosaic of mutant and non-mutant cell lineages. We found that neutral somatic mutations accumulated across 14 microsatellite loci at a rate of between 10^-6 and 10^-5 per locus per year. We suggest that neutral genetic divergence, under a star phylogeny model of clonal growth, is an alternative way to estimate clone age. Previous estimates of clone age couple the mean growth rate per year of shoots with the area covered by the clone. This assumes a positive linear relationship between clone age and clone size. We found, however, no repeatable pattern across our populations in terms of the relationship of either shape or size to the number of somatic changes. A final consequence of modularity is that during clonal growth, natural selection is relaxed for traits involving sexual function. This means that mutations deleterious to sexual function can accumulate, reducing the overall sexual fitness of a clone. We coupled neutral genetic divergence within clones with pollen fitness data to infer the rate and effect of mildly deleterious mutations. Mutations reduced relative sexual fitness in clonal aspen populations by about 0.12x10^-3 to 1.01x10^-3 per year. Furthermore, the decline in sexual function with clone age is evidence that clonal organisms are vulnerable to the effects of senescence.
|
Page generated in 0.0543 seconds