Spelling suggestions: "subject:"oon parametric bayesian"" "subject:"oon parametric eayesian""
11 |
Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme valuesHartmann, Marcelo 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.
|
12 |
Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos / Monte Carlo Hamiltonian methods in non-parametric Bayesian inference of extreme valuesMarcelo Hartmann 09 March 2015 (has links)
Neste trabalho propomos uma abordagem Bayesiana não-paramétrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locação μ da distribuição generalizada de valor extremo como uma função aleatória e assumimos um processo Gaussiano para tal função (Rasmussem & Williams 2006). Esta situação leva à intratabilidade analítica da distribuição a posteriori de alta dimensão. Para lidar com este problema fazemos uso do método Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulação de valores da distribuição a posteriori com forma complexa e estrutura de correlação incomum (Calderhead & Girolami 2011). Além disso, propomos um modelo de série temporal autoregressivo de ordem p, assumindo a distribuição generalizada de valor extremo para o ruído e determinamos a respectiva matriz de informação de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes através de simulações computacionais e apresentamos vários exemplos com dados reais e simulados. / In this work we propose a Bayesian nonparametric approach for modeling extreme value data. We treat the location parameter μ of the generalized extreme value distribution as a random function following a Gaussian process model (Rasmussem & Williams 2006). This configuration leads to no closed-form expressions for the highdimensional posterior distribution. To tackle this problem we use the Riemannian Manifold Hamiltonian Monte Carlo algorithm which allows samples from the posterior distribution with complex form and non-usual correlation structure (Calderhead & Girolami 2011). Moreover, we propose an autoregressive time series model assuming the generalized extreme value distribution for the noise and obtained its Fisher information matrix. Throughout this work we employ some computational simulation studies to assess the performance of the algorithm in its variants and show many examples with simulated and real data-sets.
|
13 |
Exploring Single-molecule Heterogeneity and the Price of Cell SignalingWang, Tenglong 25 January 2022 (has links)
No description available.
|
14 |
Modèle bayésien non paramétrique pour la segmentation jointe d'un ensemble d'images avec des classes partagées / Bayesian nonparametric model for joint segmentation of a set of images with shared classesSodjo, Jessica 18 September 2018 (has links)
Ce travail porte sur la segmentation jointe d’un ensemble d’images dans un cadre bayésien.Le modèle proposé combine le processus de Dirichlet hiérarchique (HDP) et le champ de Potts.Ainsi, pour un groupe d’images, chacune est divisée en régions homogènes et les régions similaires entre images sont regroupées en classes. D’une part, grâce au HDP, il n’est pas nécessaire de définir a priori le nombre de régions par image et le nombre de classes, communes ou non.D’autre part, le champ de Potts assure une homogénéité spatiale. Les lois a priori et a posteriori en découlant sont complexes rendant impossible le calcul analytique d’estimateurs. Un algorithme de Gibbs est alors proposé pour générer des échantillons de la loi a posteriori. De plus,un algorithme de Swendsen-Wang généralisé est développé pour une meilleure exploration dela loi a posteriori. Enfin, un algorithme de Monte Carlo séquentiel a été défini pour l’estimation des hyperparamètres du modèle.Ces méthodes ont été évaluées sur des images-test et sur des images naturelles. Le choix de la meilleure partition se fait par minimisation d’un critère indépendant de la numérotation. Les performances de l’algorithme sont évaluées via des métriques connues en statistiques mais peu utilisées en segmentation d’image. / This work concerns the joint segmentation of a set images in a Bayesian framework. The proposed model combines the hierarchical Dirichlet process (HDP) and the Potts random field. Hence, for a set of images, each is divided into homogeneous regions and similar regions between images are grouped into classes. On the one hand, thanks to the HDP, it is not necessary to define a priori the number of regions per image and the number of classes, common or not.On the other hand, the Potts field ensures a spatial consistency. The arising a priori and a posteriori distributions are complex and makes it impossible to compute analytically estimators. A Gibbs algorithm is then proposed to generate samples of the distribution a posteriori. Moreover,a generalized Swendsen-Wang algorithm is developed for a better exploration of the a posteriori distribution. Finally, a sequential Monte Carlo sampler is defined for the estimation of the hyperparameters of the model.These methods have been evaluated on toy examples and natural images. The choice of the best partition is done by minimization of a numbering free criterion. The performance are assessed by metrics well-known in statistics but unused in image segmentation.
|
15 |
Régression de Cox avec partitions latentes issues du modèle de PottsMartínez Vargas, Danae Mirel 07 1900 (has links)
No description available.
|
Page generated in 0.0843 seconds