Spelling suggestions: "subject:"nonergodic"" "subject:"ergodic""
61 |
Densidade do conjunto de endomorfismos com medida maximizante suportada em órbita periódica / Density of the set of endomorphisms with maximizing measure suported on a periodic orbitJuliano dos Santos Gonschorowski 26 April 2012 (has links)
Demonstramos o seguinte teorema: Seja M uma variedade Riemanniana compacta, conexa e sem bordo. Dados um endomorismo f : M ightarrow M, uma função contínua \\phi: M ightarrow R e \\epsilon > 0, então existe um endomorísmo \\tilde f : M ightarrow M tal que d(f; \\tide f) = \\max_{x \\in M} d(f(x); \\tilde f(x)) < \\epsilon, e existe uma medida \\phi-maximizante para \\tilde f que está suportada em uma orbita periodica. Este teorema e uma generalização dos resultados obtidos por S. Addas-Zanatta e F. Tal. / We prove the following theorem: Let M be a bondaryless, compact and connected Riemannian Manifold. Given an endomorphism f on M, a continuous function \\phi : M ightarrow R and \\epsilon > 0, then there exist an endomorphism \\tilde f on M with d(f; \\tilde f) < \\epsilon such that, some \\phi-maximizing measure for \\tilde f is supported on a periodic orbit. This theorem is a generalization of the results obtained by S. Addas-Zanatta and F. Tal.
|
62 |
Applications of deformation rigidity theory in Von Neumann algebrasUdrea, Bogdan Teodor 01 July 2012 (has links)
This work contains some structural results for von Neumann algebras arising from measure preserving actions by direct products of groups on probability spaces. The technology and the methods we use are a continuation of those used by Chifan and Sinclair in [10]. By employing these methods, we obtain new examples of strongly solid factors as well as von Neumann algebras with unique or no Cartan subalgebra. We show for instance that every II 1 factor associated with a weakly amenable group in the class S of Ozawa is strongly solid [59]. We also obtain a product version of this result: any maximal abelian ∗-subalgebra of any II 1 factor associated with a finite direct product of weakly amenable groups in the class S of Ozawa has an amenable normalizing algebra. Finally, pairing some of these results with Ioana's cocycle superrigidity theorem [36], we prove that compact actions by finite products of lattices in Sp(n, 1), n ≥ 2, are virtually W∗-superrigid. The results presented here are joint work with Ionut Chifan and Thomas Sinclair. They constitute the substance of an article [11] which has already been submitted for publication.
|
63 |
Propriétés stochastiques de systèmes dynamiques et théorèmes limites : deux exemples.Roger, Mikaël 18 December 2008 (has links) (PDF)
Ce travail met en jeu plusieurs systèmes dynamiques sur des tores en dimension finie, pour lesquels on sait établir des théorèmes limites, qui permettent de préciser leur comportement stochastique. On généralise d'abord le théorème limite local usuel sur un sous-shift de type fini, en ajoutant un terme de perturbation, en reprenant la preuve classique, par des techniques d'opérateurs. On en déduit un théorème limite local pour les sommes de « Riesz-Raïkov unitaires étendues », et des observables höldériennes. Pour cela, on reprend une méthode employée par Bernard Petit, en utilisant des codages symboliques, et le théorème limite local avec perturbation. Puis, on présente plusieurs situations de composées d'automorphismes hyperboliques du tore en dimension deux pour lesquelles on sait établir un théorème limite central quelque soit le choix de la composée. En particulier, on aborde le cas des matrices à coefficients entiers positifs.
|
64 |
Markov Operators and the Nevo--Stein TheoremAndreas.Cap@esi.ac.at 26 September 2001 (has links)
No description available.
|
65 |
Invariant Cocycles have Abelian RangesKlaus.Schmidt@univie.ac.at 18 September 2001 (has links)
No description available.
|
66 |
Billiards and statistical mechanicsGrigo, Alexander. January 2009 (has links)
Thesis (Ph.D)--Mathematics, Georgia Institute of Technology, 2009. / Committee Chair: Bunimovich, Leonid; Committee Member: Bonetto, Federico; Committee Member: Chow, Shui-Nee; Committee Member: Cvitanovic, Predrag; Committee Member: Weiss, Howard. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
67 |
Random homogenization of p-Laplacian with obstacles on perforated domain and related topicsTang, Lan, 1980- 09 June 2011 (has links)
Abstract not available. / text
|
68 |
Homomorphisms of the Fundamental Group of a Surface into PSU(1,1), and the Action of the Mapping Class Group.Konstantinou, Panagiota January 2006 (has links)
In this paper we consider the action of the mapping class group of a surface on the space of homomorphisms from the fundamental group of a surface into PSU(1,1). Goldman conjectured that when the surface is closed and of genus bigger than one, the action on non-Teichmuller connected components of the associated moduli space (i.e. the space of homomorphisms modulo conjugation) is ergodic. One approach to this question is to use sewing techniques which requires that one considers the action on the level of homomorphisms, and for surfaces with boundary. In this paper we consider the case of the one-holed torus with boundary condition, and we determine regions where the action is ergodic. This uses a combination of techniques developed by Goldman, and Pickrell and Xia. The basic result is an analogue of the result of Goldman's at the level of moduli.
|
69 |
Compensation Functions for Shifts of Finite Type and a Phase Transition in the p-Dini FunctionsAntonioli, John 03 September 2013 (has links)
We study compensation functions for an infinite-to-one factor code $\pi : X \to Y$ where $X$ is a shift of finite type. The $p$-Dini condition is given as a way of measuring the smoothness of a continuous function, with $1$-Dini corresponding to functions with summable variation. Two types of compensation functions are defined in terms of this condition. Given a fully-supported invariant measure $\nu$ on $Y$, we show that the relative equilibrium states of a $1$-Dini function $f$ over $\nu$ are themselves fully supported, and have positive relative entropy. We then show that there exists a compensation function which is $p$-Dini for all $p > 1$ which has relative equilibrium states supported on a finite-to-one subfactor. / Graduate / 0405 / antoniol@uvic.ca
|
70 |
Atomistic to continuum models for crystalsMcMillan, E. January 2003 (has links)
The theory of nonlinear mass-spring chains has a history stretching back to the now famous numerical simulations of Fermi, Pasta and Ulam. The unexpected results of that experiment have led to many new fields of study. Despite this, the mathematics of the lattice equations have proved sufficiently rich to attract continued attention to the present day. This work is concerned with the motions of an infinite one dimensional lattice with nearest-neighbour interactions governed by a generic potential. The Hamiltonian of such a system may be written $H = \sum_{i=-\infty}^{\infty} \, \Bigl(\frac{1}{2}p_i^2 + V(q_{i+1}-q_i)\Bigr)$, in terms of the momenta $p_i$ and the displacements $q_i$ of the lattice sites. All sites are assumed to be of equal mass. Certain generic conditions are placed on the potential $V$. Of particular interest are the solitary wave solutions which are known to exist upon such lattices. The KdV equation has long been known to emerge in a formal manner from the lattice equations as a continuum limit. More recently, the lattice's localized nonlinear modes have been rigorously approximated by the KdV's well-studied soliton solution, in the lattice's long wavelength regime. To date, however, little is known about how, and to what extent, lattice solitary waves differ from KdV solitons. It is proved in this work that a solution (which we prove to be unique) to a particular linear ordinary differential equation provides a correction to the KdV approximation. This gives, in an explicit way, the lowest order effect of lattice discreteness upon lattice solitary waves. It is also shown how such discreteness effects are propagated along the lattice both in isolation (single soliton case), and in the presence of another soliton correction (the bisoliton case). In the latter case their interaction is studied and the impact of lattice discreteness upon lattice solitary wave interactions is observed. This is possible by virtue of the discovery of an evolution equation for discreteness effects on the lattice. This equation is proved to have appropriate unique solutions and is found to be strikingly similar to corresponding equations known in both the theories of shallow water waves and ion-acoustic waves.
|
Page generated in 0.0228 seconds