• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementations of Fuzzy Adaptive Dynamic Programming Controls on DC to DC Converters

Chotikorn, Nattapong 05 1900 (has links)
DC to DC converters stabilize the voltage obtained from voltage sources such as solar power system, wind energy sources, wave energy sources, rectified voltage from alternators, and so forth. Hence, the need for improving its control algorithm is inevitable. Many algorithms are applied to DC to DC converters. This thesis designs fuzzy adaptive dynamic programming (Fuzzy ADP) algorithm. Also, this thesis implements both adaptive dynamic programming (ADP) and Fuzzy ADP on DC to DC converters to observe the performance of the output voltage trajectories.
2

Practical And Reliable Wireless Power Supply Design For Low Power Implantable Medical Devices

Christopher J Quinkert (9755558) 14 December 2020 (has links)
<p>Implantable wireless devices are used to treat a variety of diseases that are not able to be treated with pharmaceuticals or traditional surgery, These implantable devices have use in the treatment of neurological disorders like epilepsy, optical disorders such as glaucoma, or injury related issues such as targeted muscle reinnervation. These devices can rely upon harvesting power from an inductive wireless power source and batteries. Improvements to how well the devices utilize this power directly increase the efficacy of the device operation as well as the device's lifetime, reducing the need for future surgeries or implantations. </p> <p> I have designed an improvement to cavity resonator based wireless power by designing a dynamic impedance matching implantable power supply, capable of tracking with device motion throughout a changing magnetic field and tracking with changing powering frequencies. This cavity resonator based system presents further challenges practically in the turn-on cycle of the improved device. </p> <p> I further design a coil-to-coil based wireless power system, capable of dynamically impedance matching a high quality factor coil to optimize power transfer during steady state, while also reducing turn-on transient power required in dynamic systems by utilizing a second low quality factor coil. This second coil has a broadband response and is capable of turning on at lower powers than that of the high quality factor coil. The low quality factor coil powers the circuitry that dynamically matches the impedance of the high quality factor coil, allowing for low power turn on while maintaining high power transfer at all operating frequencies to the implantable device. </p> <p> Finally, an integrated circuit is designed, fabricated, and tested that is capable of smoothly providing regulated DC power to the implantable device by stepping up from wireless power to a reasonable voltage level or stepping down from a battery to a reasonable voltage level for the device. The chip is fabricated in 0.18um CMOS process and is capable of providing power to the "Bionode" implantable device. </p>

Page generated in 0.0557 seconds