• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 13
  • 7
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 101
  • 46
  • 44
  • 26
  • 21
  • 21
  • 21
  • 20
  • 19
  • 16
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On A New Approach to Model Reference Adaptive Control

Naghmeh, Mansouri 24 July 2008 (has links)
The objective of adaptive control is to design a controller that can adjust its behaviour to tolerate uncertain or time-varying parameters. An adaptive controller typically consists of a linear time-invariant (LTI) compensator together with a tuning mechanism which adjusts the compensator parameters and yields a nonlinear controller. Because of the nonlinearity, the transient closed-loop behaviour is often poor and the control signal may become unduly large. Although the initial objective of adaptive control was to deal with time-varying plant parameters, most classical adaptive controllers cannot handle rapidly changing parameters. Recently, the use of a linear periodic (LP) controller has been proposed as a new approach in the field of model reference adaptive control [1]. In this new approach, instead of estimating plant parameters, the “ideal control signal” (what the control signal would be if the plant parameters and states were measurable) is estimated. The resulting controller has a number of desirable features: (1) it handles rapid changes in the plant parameters, (2) it provides nice transient behaviour of the closed-loop system, (3) it guarantees that the effect of the initial conditions declines to zero exponentially, and (4) it generates control signals which are modest in size. Although the linear periodic controller (LPC) has the above advantages, it has some imperfections. In order to achieve the desirable features, a rapidly varying control signal and a small sampling period are used. The rapidly time-varying control signal requires fast actuators which may not be practical. The second weakness of the LPC [1] is poor noise rejection behaviour. The small sampling period results in large controller gains and correspondingly poor noise sensitivity, since there is a clear trade-off between tracking and noise tolerance. As the last drawback, this controller requires knowledge of the exact plant relative degree. Here we extend this work in several directions: (i) In [1], the infinity-norm is used to measure the signal size. Here we redesign the controller to yield a new version which provides comparable results when the more common 2-norm is used to measure signal size, (ii) A key drawback of the controller of [1] is that the control signal moves rapidly. Here we redesign the control law to significantly alleviate this problem, (iii) The redesigned controller can handle large parameter variation and in the case that the sign of high frequency gain is known, the closed-loop system is remarkably noise-tolerant, (iv) We prove that in an important special case, we can replace the requirement of knowledge of the exact relative degree with that of an upper bound on the relative degree, at least from the point of view of providing stability, and (v) A number of approaches to improve the noise behaviour of the controller are presented. Reference: [1] D. E. Miller, “A New Approach to Model Reference Adaptive Control”, IEEE Transaction on Automatic Control, Vol. 48, No. 5, pages 743-756, May 2003.
22

On A New Approach to Model Reference Adaptive Control

Naghmeh, Mansouri 24 July 2008 (has links)
The objective of adaptive control is to design a controller that can adjust its behaviour to tolerate uncertain or time-varying parameters. An adaptive controller typically consists of a linear time-invariant (LTI) compensator together with a tuning mechanism which adjusts the compensator parameters and yields a nonlinear controller. Because of the nonlinearity, the transient closed-loop behaviour is often poor and the control signal may become unduly large. Although the initial objective of adaptive control was to deal with time-varying plant parameters, most classical adaptive controllers cannot handle rapidly changing parameters. Recently, the use of a linear periodic (LP) controller has been proposed as a new approach in the field of model reference adaptive control [1]. In this new approach, instead of estimating plant parameters, the “ideal control signal” (what the control signal would be if the plant parameters and states were measurable) is estimated. The resulting controller has a number of desirable features: (1) it handles rapid changes in the plant parameters, (2) it provides nice transient behaviour of the closed-loop system, (3) it guarantees that the effect of the initial conditions declines to zero exponentially, and (4) it generates control signals which are modest in size. Although the linear periodic controller (LPC) has the above advantages, it has some imperfections. In order to achieve the desirable features, a rapidly varying control signal and a small sampling period are used. The rapidly time-varying control signal requires fast actuators which may not be practical. The second weakness of the LPC [1] is poor noise rejection behaviour. The small sampling period results in large controller gains and correspondingly poor noise sensitivity, since there is a clear trade-off between tracking and noise tolerance. As the last drawback, this controller requires knowledge of the exact plant relative degree. Here we extend this work in several directions: (i) In [1], the infinity-norm is used to measure the signal size. Here we redesign the controller to yield a new version which provides comparable results when the more common 2-norm is used to measure signal size, (ii) A key drawback of the controller of [1] is that the control signal moves rapidly. Here we redesign the control law to significantly alleviate this problem, (iii) The redesigned controller can handle large parameter variation and in the case that the sign of high frequency gain is known, the closed-loop system is remarkably noise-tolerant, (iv) We prove that in an important special case, we can replace the requirement of knowledge of the exact relative degree with that of an upper bound on the relative degree, at least from the point of view of providing stability, and (v) A number of approaches to improve the noise behaviour of the controller are presented. Reference: [1] D. E. Miller, “A New Approach to Model Reference Adaptive Control”, IEEE Transaction on Automatic Control, Vol. 48, No. 5, pages 743-756, May 2003.
23

On the estimation of time series regression coefficients with long range dependence

Chiou, Hai-Tang 28 June 2011 (has links)
In this paper, we study the parameter estimation of the multiple linear time series regression model with long memory stochastic regressors and innovations. Robinson and Hidalgo (1997) and Hidalgo and Robinson (2002) proposed a class of frequency-domain weighted least squares estimates. Their estimates are shown to achieve the Gauss-Markov bound with standard convergence rate. In this study, we proposed a time-domain generalized LSE approach, in which the inverse autocovariance matrix of the innovations is estimated via autoregressive coefficients. Simulation studies are performed to compare the proposed estimates with Robinson and Hidalgo (1997) and Hidalgo and Robinson (2002). The results show the time-domain generalized LSE is comparable to Robinson and Hidalgo (1997) and Hidalgo and Robinson (2002) and attains higher efficiencies when the autoregressive or moving average coefficients of the FARIMA models have larger values. A variance reduction estimator, called TF estimator, based on linear combination of the proposed estimator and Hidalgo and Robinson (2002)'s estimator is further proposed to improve the efficiency. Bootstrap method is applied to estimate the weights of the linear combination. Simulation results show the TF estimator outperforms the frequency-domain as well as the time-domain approaches.
24

System Identification: Time Varying and Nonlinear Methods

Majji, Manoranjan 2009 May 1900 (has links)
Novel methods of system identification are developed in this dissertation. First set of methods are designed to realize time varying linear dynamical system models from input-output experimental data. The preliminary results obtained in a recent paper by the author are extended to establish a new algorithm called the Time Varying Eigensystem Realization Algorithm (TVERA). The central aim of this algorithm is to obtain a linear, time varying, discrete time model sequence of the dynamic system directly from the input-output data. Important results relating to concepts concerning coordinate systems for linear time varying systems are developed (discrete time theory) and an intuitive understanding of equivalent realizations is provided. A procedure to develop first few time step models is detailed, providing a unified solution to the time varying identification problem. The practical problem of identifying the time varying generalized Markov parameters required for TVERA is presented as the next result. In the process, we generalize the classical time invariant input output AutoRegressive model with an eXogenous input (ARX) models to the time varying case and realize an asymptotically stable observer as a byproduct of the calculations. It is further found that the choice of the generalized time varying ARX model (GTV-ARX) can be set to realize a time varying dead beat observer. Methods to use the developed algorithm(s) in this research are then considered for application to the identification of system models that are bilinear in nature. The fact that bilinear plant models become linear for constant inputs is used in the development of an algorithm that generalizes the classical developments of Juang. An intercept problem is considered as a candidate for application of the time varying identification scheme, where departure motion dynamics model sequence is calculated about a nominal trajectory with suboptimal performance owing to the presence of unstructured perturbations. Control application is subsequently demonstrated. The dynamics of a particle in a rotating tube is considered next for identification using the time varying eigensystem realization algorithm. Continuous time bilinear system identification method is demonstrated using the particle example and the identification of an automobile brake model.
25

Research on the Gap Metric Controller for LTI Systems

Chiu, Tsan-Hsun 20 July 2001 (has links)
In this paper, the gap metric is introduced to study the robustness of the stability of feedback systems. A relation between the gap metric and coprime fractions is also investigated. It is shown that the stability radius of the controller in the gap metric is equal to the stability margin of the controller. In the loop-shaping design procedure in the £h-gap metric, it is practically hard to formulate an ideal controller. Finally, this paper studied the conservatism of the gap metric, and proposed some properties that can help for control design and analysis.
26

The effectiveness of central bank interventions in the foreign exchange market

Seerattan, Dave Arnold January 2012 (has links)
The global foreign exchange market is the largest financial market with turnover in this market often outstripping the GDP of countries in which they are located. The dynamics in the foreign exchange market, especially price dynamics, have huge implications for financial asset values, financial returns and volatility in the international financial system. It is therefore an important area of study. Exchange rates have often departed significantly from the level implied by fundamentals and exhibit excessive volatility. This reality creates a role for central bank intervention in this market to keep the rate in line with economic fundamentals and the overall policy mix, to stabilize market expectations and to calm disorderly markets. Studies that attempt to measure the effectiveness of intervention in the foreign exchange market in terms of exchange rate trends and volatility have had mixed results. This, in many cases, reflects the unavailability of data and the weaknesses in the empirical frameworks used to measure effectiveness. This thesis utilises the most recent data available and some of the latest methodological advances to measure the effectiveness of central bank intervention in the foreign exchange markets of a variety of countries. It therefore makes a contribution in the area of applied empirical methodologies for the measurement of the dynamics of intervention in the foreign exchange market. It demonstrates that by using high frequency data and more robust and appropriate empirical methodologies central bank intervention in the foreign exchange market can be effective. Moreover, a framework that takes account of the interactions between different central bank policy instruments and price dynamics, the reaction function of the central bank, different states of the market, liquidity in the market and the profitability of the central bank can improve the effectiveness of measuring the impact of central bank policy in the foreign exchange market and provide useful information to policy makers.
27

Indirect adaptive control using the linear quadratic solution

Ghoneim, Youssef Ahmed. January 1985 (has links)
This thesis studies the indirect adaptive control for discrete linear time invariant systems. The adaptive control strategy is based on the linear quadratic regulator that places the closed loop poles such that an infinite stage quadratic cost function is minimized. The plant parameters are identified recursively using a projection algorithm. / First, we study the effect of the model over-parametrization. For this purpose, we introduce an algorithm to generate the controller parameters recursively. This asymptotic reformulation is shown to overcome situations in which the pole-zero cancellation is a limit point of the identification algorithm. We also show that the algorithm will generate a unique control sequence that converges asymptotically to the solution of the Diophantine (pole assignment) equation. / Next, we study the stability of the proposed adaptive scheme in both deterministic and stochastic cases. We show that the global stability of the resulting adaptive scheme is obtained with no implicit assumptions about parameter convergence or the nature of the external input. Then the global convergence of the adaptive algorithm is obtained if the external input is "persistently exciting". By convergence we mean that the adaptive control will converge to the optimal control of the system. / The performance of the adaptive algorithm in the presence of deterministic disturbances is also considered, where we show that the adaptive controller performs relatively well if the model order is high enough to include a description of the disturbances.
28

Stability analysis and controller synthesis of linear parameter varying systems /

Xiong, Dapeng. January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 102-108). Available also in a digital version from Dissertation Abstracts.
29

The relationship between the Zames representation and LQG compensators

January 1983 (has links)
by Michael Athans. / Bibliography: leaf [3]. / "August 1983." / Supported by the Office of Naval Research under Grant ONR/N00014-82-K-0582 NR 606-003 NASA Ames and Langley Research Centers under Grant NGL-22-009-124
30

Controle quantizado h-infinito via realimentação de estados

Freire Junior, Vlademir Aparecido 23 May 2014 (has links)
CAPES / O objetivo desta dissertação é propor uma técnica para a síntese via realimentação de estados para sistemas lineares e invariantes no tempo, considerando que os estados realimentados são previamente quantizados. Para tanto, o erro de quantização é inicialmente modelado como um ruído externo. Assim, o problema de obter os ganhos de realimentação de estados, se torna um problema de projetar os ganhos que minimizem a norma H¥ do sistema controlado. Os ganhos de realimentação são calculados pela solução de um conjunto de condições descritas na forma de desigualdades matriciais lineares. A técnica é ilustrada pela aplicação da realimentação de estados quantizada em um servomecanismo. / The main objective of this dissertation is to propose a technique for synthesis by statefeedback for linear time-invariant systems, considering that the states are quantized before the feedback. To tackle such problem, the quantization error is initially modeled as an external noise. Therefore, the problem of getting the state-feedback gains, becomes a problem of designing the gains that minimize the H¥ norm of the system. The state-feedback gains are calculated by solving a set of conditions described in the form of linear matrix inequalities. The technique is illustrated by applying the of feedback of quantized states to a servo-mechanism.

Page generated in 0.0352 seconds