• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 341
  • 124
  • 71
  • 52
  • 48
  • 29
  • 20
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 843
  • 109
  • 84
  • 64
  • 56
  • 54
  • 49
  • 48
  • 46
  • 44
  • 44
  • 43
  • 42
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Fibre Orientation Modelling Applied to Contracting Flows Related to Papermaking

Hyensjö, Marko January 2008 (has links)
The main goal of this work was to develop numerical models for studying the behaviour of fibres in an accelerated flow. This is of special interest for e.g. papermaking. The early stage of the paper manufacturing process determines most of the final properties of a paper sheet. The complexity of studying the flow of fibre suspensions both experimentally and numerically emphasises a need for new ideas and developments. By means of solving the evolution of a convective-dispersion equation, i.e. the Fokker-Planck equation, a fully 3D approach with respect to the position and the two fibre angles, polar and azimuthal angles, following a streamline is presented. As an input to the fibre orientation model the turbulent flow field is solved by Computational Fluid Dynamics (CFD) with second-order closure in the turbulence model. In this work two new hypotheses have been presented for the variation of the non-dimensional rotational diffusivity with non-dimensional fibre length, Lf /η and the Reynolds number based on the Taylor micro-scale of the turbulence, Reλ Parameters for the two new hy- potheses and earlier models are determined with the aim of achieving a general relation and a value of the rotational dispersion coeffcient of stiff fibres in an anisotropic turbulent fluid flow. Earlier modelling work has been focused on solving the planar approach, i.e. assuming all fibres to be in one plane. This planar approach is discussed and compared with the fully 3D approach and its validity is evaluated. The optimization of parameters for the different hypotheses correlated on a central streamline, showed a good agreement with an independent experimental result in the undisturbed region. Moreover, it is particularly interesting that the boundary layer region and the wake region are predicted fairly well and the phenomena are well described, which has not been the case earlier. It seems that the new hypothesis based on the variation of the non-dimensional fibre length, Lf /η gives the best correlation in these shear-layer regions. Further- more it was established that the planar approach fails to predict shear layers, i.e. the boundary layer and the wake regions. As emphasized in the theory section, the planar formulation is strictly valid only if all fibres are oriented in one plane, which is not the case in the shear layers. In the undisturbed region, the 3D and the planar approaches, agree in their results. This leads to the conclusion that both approaches are suitable when shear layers are not studied. / QC 20100812
422

Electromagnetic simulation and design of etched diffraction grating demultiplexers

Song, Jun January 2008 (has links)
Among various planar lightwave circuits for multiplexing/demultiplexing in an optical communication system, etched diffraction gratings (EDGs) have shown great potential due to their compactness and high spectral finesse. Conventional numerical methods for grating simulation cannot be used to simulate an EDG demultiplexer of large size (in terms of the wavelength). In the present thesis, the polarization-dependent characteristics of an EDG demultiplexer are analyzed with a boundary element method (BEM) for both an echelle grating coated with a metal and a dielectric grating with total internal reflection (TIR) facets. For EDGs with metal-coated facets, we use a more effective method, namely, method of moments (MoM). Futhermore, a fast simulation method for EDGs with TIR facets is presented based on the Kirchhoff–Huygens principle and the Goos-Hänchen shift. This simple method has a good agreement with a BEM over a wide range of practical parameters of the device. Several novel designs are presented in order to improve the performances of EDGs. (1) By making some appropriate roughness on the surface of the shaded facets, the PDL of the demultiplexer can be effectively reduced over a large bandwith. (2) For EDGs based on Si nanowire structures, we compensate the polarization-dependent wavelength dispersion (PDλ) in the whole operational spectrum by introducing a polarization compensation area in its free propagation region. (3) An EDG demultiplexer with suppressed sidelobe is designed. The designed EDG demultiplexer can give a crosstalk as small as 50 dB in theory. (4) By chirping the diffraction order for each facet, we minimize the envelope intensity for the other adjacent diffraction orders to achieve a negligible return loss in a large spectral width. (5) A design for EDG demultiplexers is presented to obtain both large grating facets and a larger free spectral range (FSR) using the optimal chirped diffraction orders for different facets. The influences of the fabrication errors (e.g., rounded effect, surface roughness and point defect in the waveguide) on the performance (such as the insertion loss, the polarization dependent loss and the chromatic dispersion) of an EDG demultiplexer are also analyzed in detail. Silicon nanowire waveguides and related EDGs are studied. An EDG demultiplexer with 10 nm spacing is finally fabricated and characterized. / QC 20100910
423

Extending List Colorings of Planar Graphs

Loeb, Sarah 01 May 2011 (has links)
In the study of list colorings of graphs, we assume each vertex of a graph has a specified list of colors from which it may be colored. For planar graphs, it is known that there is a coloring for any list assignment where each list contains five colors. If we have some vertices that are precolored, can we extend this to a coloring of the entire graph? We explore distance constraints when we allow the lists to contain an extra color. For lists of length five, we fix $W$ as a subset of $V(G)$ such that all vertices in $W$ have been assigned colors from their respective lists. We give a new, simplified proof where there are a small number of precolored vertices on the same face. We also explore cases where $W=\{u,v\}$ and $G$ has a separating $C_3$ or $C_4$ between $u$ and $v$.
424

Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions

Kakehashi, Shoji, Hasegawa, Hiroshi, Sato, Ken-ichi, Moriwaki, Osamu, Kamei, Shin 01 January 2009 (has links)
No description available.
425

A Generalized 2-D Multiport Model for Planar Circuits with Slots in Ground Plane

Khajehnasiri, Amirreza January 2005 (has links)
With increasing complexity of microwave integrated circuits and tendency towards building integrated modules, real estate in printed circuit boards becomes more at premium. On the other hand, building MIC's on a single semiconductor substrate such as GaAs has other drawbacks as substrate requirements for different components are sometimes contradictory. This has motivated researchers to consider multi-layer and stacked designs. Multi-layer planar circuits offer advantages that cannot be equaled by traditional single layer designs. In this respect, a new class of planar structures, based upon a multi-layered stack of dual-mode stripline or microstrip patches is becoming increasingly popular. In the new stacked design coupling between planar circuits separated by a ground plane is accomplished through coupling apertures in the common ground plane. <br ><br /> This thesis is about developing a new approximate multiport network model for fast analysis of multi-layered planar structures with ground plane slots. To extend applicability of multiport network model (MNM) to the class of planar structures containing ground plane slots, a generalized network formulation for aperture problems is combined with traditional MNM to account for the presence of the slot. To this end, the slot is replaced by an unknown equivalent surface magnetic current. Slot ports are defined in terms of electric and magnetic fields over the slot in accordance with the generalized network formulation for aperture problems. While traditional MNM for planar circuits is based on generalized impedance matrices, we adopt a hybrid matrix approach for multi-layer structures. The hybrid matrix consists of four sub-matrices that relate terminal voltages and currents of edge and slot ports. The same generalized impedance matrix in the absence of the slot can be used to relate terminal voltages and currents of edge ports when the slot ports are short-circuited. Open circuit voltage at edge ports due to terminal voltages at slot ports and terminal currents at slot ports due to input currents at edge ports are represented by two transfer matrices. Both these transfer matrices can be calculated from 2D analysis which only considers <em>TM<sup>z</sup></em> modes. <br ><br /> Interaction among slot ports, represented by a generalized admittance matrix, however, requires considering both <em>TM<sup>z</sup></em> and <em>TE<sup>z</sup></em> modes. This generalized admittance matrix is obtained from tangential component of the magnetic field over the slot due to the equivalent surface magnetic current and relates terminal voltages and currents of slot ports. Full modal expansion consisting of both <em>TM<sup>z</sup></em> and <em>TE<sup>z</sup></em> modes is used to compute the generalized admittance matrix of a slot in a regularly shaped planar cavity. For irregularly shaped patches, modal expansion is not available. Instead, a new contour integral equation for magnetic field, derived for the first time in this thesis, is combined with complex images method for calculation of generalized admittance matrix of a slot radiating in a planar cavity of arbitrary shape. <br ><br /> Once the hybrid matrix representation of a planar circuit on a ground plane containing a slot is derived, it can be connected to the hybrid matrix of any other planar circuit on the other side of the ground plane. This can be done by enforcing network equivalent of continuity of tangential fields across the slot. This leads to a generalized impedance matrix for the multi-layer structure relating terminal voltages and currents of edge ports of both planar circuits. <br ><br /> To show the accuracy of the proposed method of analysis, several proof-of-concept structures have been analyzed by both this method and ANSOFT HFSS full-wave simulator as a reference. In most cases excellent agreement is achieved in predicting the return loss and radiation patterns of these multi-layer structures which proves the validity of the proposed approach for fast analysis and design of multi-layer planar structures.
426

Hardness results and approximation algorithms for some problems on graphs

Aazami, Ashkan January 2008 (has links)
This thesis has two parts. In the first part, we study some graph covering problems with a non-local covering rule that allows a "remote" node to be covered by repeatedly applying the covering rule. In the second part, we provide some results on the packing of Steiner trees. In the Propagation problem we are given a graph $G$ and the goal is to find a minimum-sized set of nodes $S$ that covers all of the nodes, where a node $v$ is covered if (1) $v$ is in $S$, or (2) $v$ has a neighbor $u$ such that $u$ and all of its neighbors except $v$ are covered. Rule (2) is called the propagation rule, and it is applied iteratively. Throughout, we use $n$ to denote the number of nodes in the input graph. We prove that the path-width parameter is a lower bound for the optimal value. We show that the Propagation problem is NP-hard in planar weighted graphs. We prove that it is NP-hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in weighted (general) graphs. The second problem that we study is the Power Dominating Set problem. This problem has two covering rules. The first rule is the same as the domination rule as in the Dominating Set problem, and the second rule is the same propagation rule as in the Propagation problem. We show that it is hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in general graphs. We design and analyze an approximation algorithm with a performance guarantee of $O(\sqrt{n})$ on planar graphs. We formulate a common generalization of the above two problems called the General Propagation problem. We reformulate this general problem as an orientation problem, and based on this reformulation we design a dynamic programming algorithm. The algorithm runs in linear time when the graph has tree-width $O(1)$. Motivated by applications, we introduce a restricted version of the problem that we call the $\ell$-round General Propagation problem. We give a PTAS for the $\ell$-round General Propagation problem on planar graphs, for small values of $\ell$. Our dynamic programming algorithms and the PTAS can be extended to other problems in networks with similar propagation rules. As an example we discuss the extension of our results to the Target Set Selection problem in the threshold model of the diffusion processes. In the second part of the thesis, we focus on the Steiner Tree Packing problem. In this problem, we are given a graph $G$ and a subset of terminal nodes $R\subseteq V(G)$. The goal in this problem is to find a maximum cardinality set of disjoint trees that each spans $R$, that is, each of the trees should contain all terminal nodes. In the edge-disjoint version of this problem, the trees have to be edge disjoint. In the element-disjoint version, the trees have to be node disjoint on non-terminal nodes and edge-disjoint on edges adjacent to terminals. We show that both problems are NP-hard when there are only $3$ terminals. Our main focus is on planar instances of these problems. We show that the edge-disjoint version of the problem is NP-hard even in planar graphs with $3$ terminals on the same face of the embedding. Next, we design an algorithm that achieves an approximation guarantee of $\frac{1}{2}-\frac{1}{k}$, given a planar graph that is $k$ element-connected on the terminals; in fact, given such a graph the algorithm returns $k/2-1$ element-disjoint Steiner trees. Using this algorithm we get an approximation algorithm with guarantee of (almost) $4$ for the edge-disjoint version of the problem in planar graphs. We also show that the natural LP relaxation of the edge-disjoint Steiner Tree Packing problem has an integrality ratio of $2-\epsilon$ in planar graphs.
427

A Generalized 2-D Multiport Model for Planar Circuits with Slots in Ground Plane

Khajehnasiri, Amirreza January 2005 (has links)
With increasing complexity of microwave integrated circuits and tendency towards building integrated modules, real estate in printed circuit boards becomes more at premium. On the other hand, building MIC's on a single semiconductor substrate such as GaAs has other drawbacks as substrate requirements for different components are sometimes contradictory. This has motivated researchers to consider multi-layer and stacked designs. Multi-layer planar circuits offer advantages that cannot be equaled by traditional single layer designs. In this respect, a new class of planar structures, based upon a multi-layered stack of dual-mode stripline or microstrip patches is becoming increasingly popular. In the new stacked design coupling between planar circuits separated by a ground plane is accomplished through coupling apertures in the common ground plane. <br ><br /> This thesis is about developing a new approximate multiport network model for fast analysis of multi-layered planar structures with ground plane slots. To extend applicability of multiport network model (MNM) to the class of planar structures containing ground plane slots, a generalized network formulation for aperture problems is combined with traditional MNM to account for the presence of the slot. To this end, the slot is replaced by an unknown equivalent surface magnetic current. Slot ports are defined in terms of electric and magnetic fields over the slot in accordance with the generalized network formulation for aperture problems. While traditional MNM for planar circuits is based on generalized impedance matrices, we adopt a hybrid matrix approach for multi-layer structures. The hybrid matrix consists of four sub-matrices that relate terminal voltages and currents of edge and slot ports. The same generalized impedance matrix in the absence of the slot can be used to relate terminal voltages and currents of edge ports when the slot ports are short-circuited. Open circuit voltage at edge ports due to terminal voltages at slot ports and terminal currents at slot ports due to input currents at edge ports are represented by two transfer matrices. Both these transfer matrices can be calculated from 2D analysis which only considers <em>TM<sup>z</sup></em> modes. <br ><br /> Interaction among slot ports, represented by a generalized admittance matrix, however, requires considering both <em>TM<sup>z</sup></em> and <em>TE<sup>z</sup></em> modes. This generalized admittance matrix is obtained from tangential component of the magnetic field over the slot due to the equivalent surface magnetic current and relates terminal voltages and currents of slot ports. Full modal expansion consisting of both <em>TM<sup>z</sup></em> and <em>TE<sup>z</sup></em> modes is used to compute the generalized admittance matrix of a slot in a regularly shaped planar cavity. For irregularly shaped patches, modal expansion is not available. Instead, a new contour integral equation for magnetic field, derived for the first time in this thesis, is combined with complex images method for calculation of generalized admittance matrix of a slot radiating in a planar cavity of arbitrary shape. <br ><br /> Once the hybrid matrix representation of a planar circuit on a ground plane containing a slot is derived, it can be connected to the hybrid matrix of any other planar circuit on the other side of the ground plane. This can be done by enforcing network equivalent of continuity of tangential fields across the slot. This leads to a generalized impedance matrix for the multi-layer structure relating terminal voltages and currents of edge ports of both planar circuits. <br ><br /> To show the accuracy of the proposed method of analysis, several proof-of-concept structures have been analyzed by both this method and ANSOFT HFSS full-wave simulator as a reference. In most cases excellent agreement is achieved in predicting the return loss and radiation patterns of these multi-layer structures which proves the validity of the proposed approach for fast analysis and design of multi-layer planar structures.
428

Hardness results and approximation algorithms for some problems on graphs

Aazami, Ashkan January 2008 (has links)
This thesis has two parts. In the first part, we study some graph covering problems with a non-local covering rule that allows a "remote" node to be covered by repeatedly applying the covering rule. In the second part, we provide some results on the packing of Steiner trees. In the Propagation problem we are given a graph $G$ and the goal is to find a minimum-sized set of nodes $S$ that covers all of the nodes, where a node $v$ is covered if (1) $v$ is in $S$, or (2) $v$ has a neighbor $u$ such that $u$ and all of its neighbors except $v$ are covered. Rule (2) is called the propagation rule, and it is applied iteratively. Throughout, we use $n$ to denote the number of nodes in the input graph. We prove that the path-width parameter is a lower bound for the optimal value. We show that the Propagation problem is NP-hard in planar weighted graphs. We prove that it is NP-hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in weighted (general) graphs. The second problem that we study is the Power Dominating Set problem. This problem has two covering rules. The first rule is the same as the domination rule as in the Dominating Set problem, and the second rule is the same propagation rule as in the Propagation problem. We show that it is hard to approximate the optimal value to within a factor of $2^{\log^{1-\epsilon}{n}}$ in general graphs. We design and analyze an approximation algorithm with a performance guarantee of $O(\sqrt{n})$ on planar graphs. We formulate a common generalization of the above two problems called the General Propagation problem. We reformulate this general problem as an orientation problem, and based on this reformulation we design a dynamic programming algorithm. The algorithm runs in linear time when the graph has tree-width $O(1)$. Motivated by applications, we introduce a restricted version of the problem that we call the $\ell$-round General Propagation problem. We give a PTAS for the $\ell$-round General Propagation problem on planar graphs, for small values of $\ell$. Our dynamic programming algorithms and the PTAS can be extended to other problems in networks with similar propagation rules. As an example we discuss the extension of our results to the Target Set Selection problem in the threshold model of the diffusion processes. In the second part of the thesis, we focus on the Steiner Tree Packing problem. In this problem, we are given a graph $G$ and a subset of terminal nodes $R\subseteq V(G)$. The goal in this problem is to find a maximum cardinality set of disjoint trees that each spans $R$, that is, each of the trees should contain all terminal nodes. In the edge-disjoint version of this problem, the trees have to be edge disjoint. In the element-disjoint version, the trees have to be node disjoint on non-terminal nodes and edge-disjoint on edges adjacent to terminals. We show that both problems are NP-hard when there are only $3$ terminals. Our main focus is on planar instances of these problems. We show that the edge-disjoint version of the problem is NP-hard even in planar graphs with $3$ terminals on the same face of the embedding. Next, we design an algorithm that achieves an approximation guarantee of $\frac{1}{2}-\frac{1}{k}$, given a planar graph that is $k$ element-connected on the terminals; in fact, given such a graph the algorithm returns $k/2-1$ element-disjoint Steiner trees. Using this algorithm we get an approximation algorithm with guarantee of (almost) $4$ for the edge-disjoint version of the problem in planar graphs. We also show that the natural LP relaxation of the edge-disjoint Steiner Tree Packing problem has an integrality ratio of $2-\epsilon$ in planar graphs.
429

Design of a bistatic nearfield array for an expanded volume

Terrell, Stephen John 18 April 2005 (has links)
Achieving acceptable plane wave uniformity throughout an expanded volume is necessary to conduct scattering measurements on a large target in a controlled environment. An expanded volume is large relative to the size of the nearfield array configuration used to produce plane wave uniformity. The optimum set of shading coefficients for a nearfield array may not produce acceptable plane wave uniformity as the volume and frequency domain are expanded for a given array configuration. Choosing the frequency domain as a single frequency for an optimum set of coefficients will produce plane wave uniformity throughout the largest possible volume for a given array configuration. This study determines the acceptability of uniformity results produced by an optimum set of frequency dependent coefficients throughout an expanded volume for two array configurations that comprise a system for measuring bistatic target strength in the nearfield. Minimizing the frequency domain chosen for an optimum set of coefficients will produce plane wave uniformity for the largest possible volume for a given array configuration. This study determines the acceptability of uniformity results produced by an optimum set of frequency dependent coefficients throughout an optimistic volume for two array configurations that comprise a bi-static array.
430

Quantitative Acetone PLIF Measurements of Jet Mixing with Synthetic Jet Actuators

Ritchie, Brian Douglas 11 April 2006 (has links)
Fuel-air mixing enhancement in axisymmetric jets using an array of synthetic jet actuators around the perimeter of the flows (primarily parallel to the flow axis) was investigated using planar laser-induced fluorescence of acetone. The synthetic jets are a promising new mixing control and enhancement technology with a wide range of capabilities. An image correction scheme that improved on current ones was applied to the images acquired to generate quantitative mixing measurements. Both a single jet and coaxial jets were tested, including different velocity ratios for the coaxial jets. The actuators run at a high frequency (~1.2 kHz), and were tested with all of them on and in other geometric patterns. In addition, amplitude modulation was imposed at a lower frequency (10-100 Hz). The actuators generated small-scale structures in the outer (and inner, for the coaxial jets) mixing layers. These structures significantly enhanced the mixing in the near field (x/D less than 1) of the jets, which would be useful for correcting an off-design condition in a combustor. The amplitude modulation generated large-scale structures that became apparent farther downstream (x/D greater than 1). The impulse at the start of the duty cycle was responsible for creating the structures. The large structures contained broad regions of uniformly mixed fluid, and also entrained fluid significantly. In addition, highly asymmetric forcing geometries displayed the power of the actuators to control the spatial distribution of jet fluid. This spatial control is important for the correction of hot spots in the pattern factor. In order to extend quantitative acetone PLIF to two-phase flows, the remaining unknown photophysical properties of acetone were identified. Tests showed that the technique could simultaneously capture acetone vapor and acetone droplets. A model of droplet fluorescence was developed, and applied to images acquired in a dilute spray. The sensitivity of the model to the value of the unknowns was evaluated, including a best and worst case. The results revealed that several liquid acetone photophysical properties must be measured for the further development of the technique, especially the phosphorescence yield. Quantitative two-phase acetone PLIF will provide a powerful new tool for studying spray flows.

Page generated in 0.0438 seconds