• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 64
  • 53
  • 42
  • 39
  • 14
  • 13
  • 10
  • 8
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 596
  • 45
  • 39
  • 38
  • 36
  • 34
  • 34
  • 31
  • 31
  • 31
  • 30
  • 29
  • 29
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Coordination d’appareils autonomes sur canaux bruités : régions de capacité et algorithmes de codage / Coordination of autonomous devices over noisy channels : capacity results and coding techniques

Cervia, Giulia 30 November 2018 (has links)
Les réseaux de 5ème génération se caractérisent par la communication directe entre machines (M2M) et l’Internet des Objets, un réseau unifié d’objets connectés. Dans ce contexte, les appareils communicants sont des décideurs autonomes qui coopérent, coordonnent leurs actions et se reconfigurent de manière dynamique enfonction de leur environnement. L’enjeu est de développer des algorithmes efficaces pour coordonner les actions des appareils autonomes constituant le réseau.La théorie de l’information nous permet d’étudier le comportement de long-terme des appareils grâce aux distributions de probabilité conjointes. En particulier, nous sommes intéressés par la coordination forte, qui exige que la distribution induite sur les suites d’actions converge en distance L^1 vers une distribution i.i.d. cible.Nous considérons un model point-à-point composé d’une source d’information, d’un encodeur, d’un canal bruité, d’un décodeur, d’une information commune et nous cherchons à coordonner les signaux en entrée et en sortie du canal avec la source et sa reconstruction.Nos premiers résultats sont des bornes intérieures et extérieure pour la région de coordination forte, c’est-à-dire l’ensemble des distributions de probabilité conjointes réalisables et la quantité d’information commune requise.Ensuite, nous caractérisons cette région de coordination forte dans trois cas particuliers: lorsque le canal est parfait, lorsque le décodeur est sans perte et lorsque les variables aléatoires du canal sont indépendantes des variables aléatoires de la source. L’étude de ce dernier cas nous permet de remettre en cause le principe de séparation source-canal pour la coordination forte. Nous démontrons également que la coordination forte offre “gratuitement” des garanties de sécurité au niveau de la couche physique.Par ailleurs, nous étudions la coordination sous l’angle du codage polaire afin de développer des algorithmes de codage implémentables. Nous appliquons la polarisation de la source de manière à créer un schéma de codage explicite qui offre une alternative constructive aux preuves de codage aléatoires. / 5G networks will be characterized by machine to machine communication and the Internet of Things, a unified network of connected objects. In this context, communicating devices are autonomous decision-makers that cooperate, coordinate their actions, and reconfigure dynamically according to changes in the environment.To do this, it is essential to develop effective techniques for coordinating the actions of the nodes in the network.Information theory allows us to study the long-term behavior of the devices through the analysis of the joint probability distribution of their actions. In particular, we are interested in strong coordination, which requires the joint distribution of sequences of actions to converge to an i.i.d. target distribution in L^1 distance.We consider a two-node network comprised of an information source and a noisy channel, and we require the coordination of the signals at the input and at the output of the channel with the source and the reconstruction. We assume that the encoder and decoder share a common source of randomness and we introduce a state capturing theeffect of the environment.The first objective of this work is to characterize the strong coordination region, i.e. the set of achievable joint behaviors and the required minimal rates of common randomness. We prove inner and outer bounds for this region. Then, we characterize the exact coordination region in three particular cases: when the channel is perfect, when the decoder is lossless and when the random variables of the channel are separated from the random variables of the source.The study of the latter case allows us to show that the joint source-channel separation principle does not hold for strong coordination. Moreover, we prove that strong coordination offers “free” security guarantees at the physical layer.The second objective of this work is to develop practical codes for coordination: by exploiting the technique of source polarization, we design an explicit coding scheme for coordination, providing a constructive alternative to random coding proofs.
92

Search for the electron diffusion region of collionless magnetic reconnection on Polar mission

Rodriguez, Shanshan Li 01 May 2011 (has links)
The electron physics in the collisionless magnetic reconnection is studied using data from the Polar spacecraft. Among the types of discontinuities in space plasmas, the Electron Diffusion Region (EDR) at the center of the reconnection has the theoretically unique properties that its thickness is of order of the electron gyroradius, and in such a region electrons are demagnetized with a non-gyrotropic pressure tensor. These unusual properties of EDRs reflect the expected violation of guiding center theory for electrons and are exploited in this thesis. We use four dimensionless, diagnostic, single spacecraft observables derived from theoretical properties of EDRs to locate them. They are electron agyrotropy, out-of-interconnection-plane electron Mach number, and dimensionless thresholds for electric field strengths parallel and perpendicular to the magnetic field. These observables are constructible using the electron density, bulk velocity, pressure tensor, and the electromagnetic field data. With a 3-year survey using particle data from a slower version of Hydra's moment producing system, M3, the vast preponderance of these dimensionless parameters are below unity, which is consistent with the theoretical expectations for most space plasmas being strongly magnetized. The unusual outliers with the demagnetization parameters over unity (<1%) in the distribution are geophysically distributed near the magnetopause within 8-9 Re shells and collected as potential reconnection sites, although a number of other possibilities are also considered in this thesis such as data processing anomalies, systematic effects of data acquisition and aliasing. It is shown that plasma particle data with the highest time resolution possible are needed to improve the time aliasing issues, and to sense the rapidly changing and short scale current structure like the EDR. We use a recently developed algorithm G3/T1, which reduces the aliasing time of the 3D analysis of products of the Polar Hydra Hot Plasma Analyzer by a factor of 12. With this new technique, we have found that among these outliers some demagnetization signatures are ameliorated by higher time cadences and the ones caused by time aliasing effects are ruled out. The moment recoveries of G3/T1 at a 2.3 cadence are in excellent agreement with input distribution models over a considerably wide range of density, Mach number, electron anisotropy, and agyrotropy, provided that a suitable accurate inventory can be made in advance for the bulk velocity of these distributions. The 2 candidate reconnection events analyzed in this thesis by G3/T1 processing techniques demonstrate: (1) strong out-of-interconnection-plane electron flows along the separatrices also observed in 2D PIC simulations; (2) significant electron agyrotropy enhancements framing high thermal Mach number flow, proving excellent consistency with the agyrotropy islands predicted by PIC simulations of asymmetric reconnection geometry; and (3) measured thermal electron gyroscale current channels in patterns that are supported by PIC simulation models as resolved examples of EDRs with direct measures of the electron demagnetization.
93

Examing the Dynamic Relationship Between Climate Change and Tourism: A Case Study of Churchill's Polar Bear Viewing Industry

D'Souza, Jamie 03 October 2019 (has links)
The purpose of this thesis research was to examine the dynamic relationship between climate change and tourism, with a direct focus on Churchill, Manitoba’s polar bear viewing industry. This unique tourism industry and the polar bears it depends on, are experiencing the negative effects of climate change due to warmer temperatures and melting sea ice, which significantly impacts the health, appearance, and prevalence of polar bears on display for tourists. Not only is this tourism industry affected by climate change, it also contributes to the ongoing changes of climatic conditions. This is due to the dependence of fossil fuel energy used for transportation, accommodation, and activities which directly contributes to the release of greenhouse gas emissions and thus to global climate change. Emissions from tourism has increased by 3% over the last 10 years, largely as a result of the accessibility and affordability of air travel, the most energy intensive form of transportation (Lenzen et al., 2018; UNWTO-UNEP-WMO, 2008). It has been suggested that in response to the increase in the demand to travel, the tourism industry should take a leadership role to reduce their total greenhouse gas emissions in an effort to decrease the impact of climate change. In this study, a visitor survey was conducted during four weeks of Churchill’s 2018 polar bear viewing season (October 16 to November 16). The aim of the survey was to: 1) estimate greenhouse gas emissions from polar bear viewing tourists and the polar bear viewing industry; 2) identify tourists’ awareness of the impacts of climate change (to and from tourism activities); 3) understand tourist’s climate-related travel motivations, and 4) identify tourists’ opinions on climate change mitigation strategies. Visitor surveys were hand- distributed at the Churchill Northern Studies Centre and at the Churchill Airport to tourists who had participated on a polar bear viewing tour. Surveys were analyzed and compared with the results from similar studies (Dawson et al., 2010 and Groulx, 2015) to identify the changing trends in greenhouse gas emissions, travel motivations, tourists’ knowledge of climate change, and acceptance of climate change mitigation strategies. Similar to trends observed 10 years ago, emissions from polar bear viewing tourists are 3-34 times higher than the average global tourist experience. Tourists’ awareness about climate change has stayed relatively consistent, despite the topic of climate change having received increased attention globally. Tourists recognize that climate change is happening and that it is human induced however, there is still a lack of understanding of how air travel is a contributor to climatic change. Although briefly mentioned in some participant’s responses, the main motivation was not to see a polar bear before it disappeared from the wild. The majority of tourists identified they were traveling to Churchill simply for the opportunity to see a polar bear. Additional motivators were photography, the Northern Lights, and for the opportunity to see other Arctic animals. The climate change mitigation strategies that tourists believed to be the most effective to reduce emissions were educational programs and transportation alternatives (such as taking the train- which was not an option at the time of study due to a rail line shutdown). This research contributes to the existing knowledge about tourism and climate change and provides a current analysis of Churchill’s polar bear viewing industry, enabling a comparison between findings from another study conducted over ten years ago. This research also makes conclusions about climate change mitigation strategies that might be effective for Churchill’s tourism industry to reduce their impact on the environment.
94

Polar middle atmosphere dynamics

Dowdy, Andrew J. January 2005 (has links)
The dynamics of the polar mesosphere and lower thermosphere ( MLT ) is investigated using MF radars at Davis ( 69 ° S, 78 ° E ), Syowa ( 69 ° S, 40 ° E ) and Rothera ( 68 ° S, 68 ° W ) in the Antarctic, and Poker Flat ( 65 ° N, 147 ° W ) and Andenes ( 69 ° N, 16 ° E ) in the Arctic. Mean winds and gravity waves are investigated on a climatological scale and also during sudden stratospheric warmings. Mean wind climatologies in the MLT show differences that are often hemispheric in nature. For example, summer peaks in westward and equatorward winds occur earlier ( closer to the solstice ) in the Antarctic than in the Arctic. The greater symmetry around the solstice of phenomena such as these indicates that radiative effects may play a greater role in controlling the state of the Antarctic MLT than in the Arctic, where dynamical effects might be more important. Gravity wave observations are consistent with this theory, suggesting more wave drag may occur in the Arctic MLT. The equatorward jet persists for about 2 weeks later in summer in the Arctic than in the Antarctic, as do satellite observations of polar mesospheric clouds ( PMCs ) ( a temperature dependent phenomenon ). It is proposed that the meridional winds can be used as a proxy for gravity wave driving and consequent adiabatic cooling in the MLT. VHF radar observations of polar mesospheric summer echoes ( PMSEs ) at Davis, and the satellite PMC observations, both occur at a similar time to the equatorward jet. Seasonal variations in gravity wave activity are generally a combination of annual ( with winter maxima and summer minima ) and semi - annual ( with maxima near the solstices and minima near the equinoxes ) components. The winter maxima and spring / summer minima both occur about 3 weeks later in the Antarctic than in the Arctic, with the difference in magnitude between these extrema being about 90 % larger in the Antarctic. The available MF radar data include six major sudden stratospheric warmings in the northern hemisphere, and the unprecedented southern event which occurred during 2002 splitting the Antarctic ozone hole apart. Three of the six northern events are relatively weak and could almost be classed as minor warmings, while the larger three are similar in strength and duration to the southern event. Gravity wave activity reduces dramatically at Davis during the southern event, but not at Syowa ( possibly due to differences in critical level filtering ). The influence of major warmings on mesospheric gravity wave strength and polarisation varies significantly between locations, and individual events. Zonal wind reversals associated with the large major warmings are all weaker and occur earlier in the mesosphere than in the stratosphere. Another hemispherically common response is zonal wave - 1 planetary wave signatures in the mesospheric meridional winds ( i.e., a flow over the pole ). The planetary wave signatures have 14 - day periodicity and are westward propagating leading up to the southern event. The zonal winds are weaker than average during the 2002 southern winter, and also during the transition to the summer circulation. This is not seen for the large northern major warmings. There appears to be both hemispheric similarities and differences in polar middle atmosphere dynamics during stratospheric warmings, and also on a climatological scale. / Thesis (Ph.D.)--School of Chemistry and Physics, 2005.
95

Computational and experimental investigations of forces in protein folding

Schell, David Andrew 17 February 2005 (has links)
Properly folded proteins are necessary for all living organisms. Incorrectly folded proteins can lead to a variety of diseases such as Alzheimer’s Disease or Bovine Spongiform Encephalitis (Mad Cow Disease). Understanding the forces involved in protein folding is essential to the understanding and treatment of protein misfolding diseases. When proteins fold, a significant amount of surface area is buried in the protein interior. It has long been known that burial of hydrophobic surface area was important to the stability of the folded structure. However, the impact of burying polar surface area is not well understood. Theoretical results suggest that burying polar groups decreases the stability, but experimental evidence supports the belief that polar group burial increases the stability. Studies of tyrosine to phenylalanine mutations have shown the removal of the tyrosine OH group generally decreases stability. Through computational investigations into the effect of buried tyrosine on protein stability, favorable van der Waals interactions are shown to correlate with the change in stability caused by replacing the tyrosine with phenylalanine to remove the polar OH group. Two large-scale studies on nearly 1000 high-resolution x-ray structures are presented. The first investigates the electrostatic and van der Waals interactions, analyzing the energetics of burying various atom groups in the protein interior. The second large-scale study analyzes the packing differences in the interior of the protein and shows that hydrogen bonding increases packing, decreasing the volume of a hydrogen bonded backbone by about 1.5 Å3 per hydrogen bond. Finally, a structural comparison between RNase Sa and a variant in which five lysines replaced five acidic groups to reverse the net charge is presented. It is shown that these mutations have a marginal impact on the structure, with only small changes in some loop regions.
96

Diving In Extreme Environments: : The Scientific Diving Experience

Lang, Michael A. January 2012 (has links)
The scope of extreme-environment diving defined within this work encompasses diving modes outside of the generally accepted no-decompression, open-circuit, compressed-air diving limits on selfcontained underwater breathing apparatus (scuba) in temperate or warmer waters. Extreme-environment diving is scientifically and politically interesting. The scientific diving operational safety and medical framework is the cornerstone from which diving takes place in the scientific community. From this effective baseline, as evidenced by decades of very low DCS incidence rates, the question of whether compressed air is the best breathing medium under pressure was addressed with findings indicating that in certain depth ranges a higher fraction of oxygen (while not exceeding a PC 2 of 1.6 ATA) and a lower fraction of nitrogen result in extended bottom times and a more efficient decompression. Extremeenvironment diving under ice presents a set of physiological. equipment, training and operational challenges beyond regular diving that have also been met through almost 50 years of experience as an underwater research tool. Diving modes such as mixed-gas, surface-supplied diving with helmets may mitigate risk factors that the diver incurs as a result of depth, inert gas narcosis or gas consumption. A close approximation of inert gas loading and decompression status monitoring is a function met by dive computers, a necessity in particular when the diver ventures outside of the single-dive profile into the realm of multi-level, multi-day repetitive diving or decompression diving. The monitoring of decompression status in extreme environments is now done exclusively through the use of dive computers and evaluations of the performance of regulators under ice have determined the characteristics of the next generation of life-support equipment for extreme-environment diving for science. These polar, deep and contaminated water environments require risk assessment that analyzes hazards such as cold stress, hydration, overheating, narcosis, equipment performance and decompression sickness. Scientific diving is a valuable research tool that has become an integral methodology in the pursuit of scientific questions in extreme environments of polar regions, in contaminated waters, and at depth.
97

A Hybrid Quadrature Polar Modulator for Enhancing Average-Efficiency of 3G Mobile Transmitter with Power Control

Chen, Chi-Tsan 03 September 2007 (has links)
This thesis aims to use a hybrid quadrature polar modulator (HQPM) for enhancing average efficiency of 3G mobile transmitter with power control. The HQPM consists of a quadrature modulator instead of a phase modulator in the polar modulator for processing the RF modulated carrier and a Class-S modulator for processing the envelope signal. In addition, the instantaneous magnitude of the quadrature modulated signal is propotional to the instantaneous envelope magnitude. As a result, the output feed-through and gain-compression phenomenon in the polar modulator can be improved. The digital baseband processor realized by FPGA can generate CDMA2000 1x baseband signal with excellent modulation accuracy. For enhancing the average transmit efficiency, the output PA is realized as Class-E design. But the Vdd/AM and Vdd/PM nonlinear effects of the Class-E PA distort the output signal. To solve this problem, a digital predistorter is presented to compensate the nonlinear distortions. The proposed HQPM-based transmitter can simultaneously achieve high efficiency and high linearity over a wide modulated output power range.
98

Why are polar residues within the membrane core evolutionary conserved?

Illergård, Kristoffer, Kauko, Anni, Elofsson, Arne January 2011 (has links)
Here, we present a study of polar residues within the membrane core of alpha-helical membrane proteins. As expected, polar residues are less frequent in the membrane than expected. Further, most of these residues are buried within the interior of the protein and are only rarely exposed to lipids. However, the polar groups often border internal water filled cavities, even if the rest of the sidechain is buried. A survey of their functional roles in known structures showed that the polar residues are often directly involved in binding of small compounds, especially in channels and transporters, but other functions including proton transfer, catalysis, and selectivity have also been attributed to these proteins. Among the polar residues histidines often interact with prosthetic groups in photosynthetic-and oxidoreductase-related proteins, whereas pro-lines often are required for conformational changes of the proteins. Indeed, the polar residues in the membrane core are more conserved than other residues in the core, as well as more conserved than polar residues outside the membrane. The reason is twofold; they are often (i) buried in the interior of the protein and (ii) directly involved in the function of the proteins. Finally, a method to identify which polar residues are present within the membrane core directly from protein sequences was developed. Applying the method to the set of all human membrane proteins the prediction indicates that polar residues were most frequent among active transporter proteins and GPCRs, whereas infrequent in families with few transmembrane regions, such as non-GPCR receptors. Proteins 2011; 79: 79-91. / <p>authorCount :3</p>
99

Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates

Dovlo, Edem 29 September 2011 (has links)
The Fourier transform is one of the most useful tools in science and engineering and can be expanded to multi-dimensions and curvilinear coordinates. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. In this thesis, the development of a symbolic computer algebra toolbox to compute two dimensional Fourier transforms in polar coordinates is discussed. Among the many operations implemented in this toolbox are different types of convolutions and procedures that allow for managing the toolbox effectively. The implementation of the two dimensional Fourier transform in polar coordinates within the toolbox is shown to be a combination of two significantly simpler transforms. The toolbox is also tested throughout the thesis to verify its capabilities.
100

Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates

Dovlo, Edem 29 September 2011 (has links)
The Fourier transform is one of the most useful tools in science and engineering and can be expanded to multi-dimensions and curvilinear coordinates. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. In this thesis, the development of a symbolic computer algebra toolbox to compute two dimensional Fourier transforms in polar coordinates is discussed. Among the many operations implemented in this toolbox are different types of convolutions and procedures that allow for managing the toolbox effectively. The implementation of the two dimensional Fourier transform in polar coordinates within the toolbox is shown to be a combination of two significantly simpler transforms. The toolbox is also tested throughout the thesis to verify its capabilities.

Page generated in 0.0357 seconds