• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 404
  • 248
  • 113
  • 48
  • 34
  • 26
  • 12
  • 10
  • 8
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1105
  • 576
  • 519
  • 183
  • 136
  • 117
  • 108
  • 102
  • 91
  • 87
  • 85
  • 84
  • 83
  • 72
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Syntheses of macrocyclic oligomers for low-VOC coating process on the surface of metal substrates

Liu, Zhen'guo 05 1900 (has links)
No description available.
132

The role of fungal metabolic by-products in indoor air chemistry : analytical considerations for the evaluation of poor indoor environments

De Jesʹus, Victor Raʹul 05 1900 (has links)
No description available.
133

Nutritional Characterization of Wheat Distillers Dried Grains with Solubles in Grower-Finisher Pigs

Kandel, Krishna Unknown Date
No description available.
134

CHARACTERIZATION OF VOLATILE ORGANIC COMPOUNDS RELEASED BY STORED GRAIN INSECTS

THIRUPPATHI, SENTHILKUMAR 13 September 2010 (has links)
Detecting the presence of insects at low densities can avoid total deterioration of stored grains because corrective actions can be implemented early. Tribolium castaneum (Herbst) and Cryptolestes ferrugineus (Stephens) are the major insect pests of the Canadian grain handling industry. Identification of the volatile organic compounds released by insects can be used to detect insects in stored grains. An attempt was made to identify the volatile organic compounds released by T. castaneum and C. ferrugineus by headspace analysis. The volatiles in the head space of vials with insects, insects and wheat flour, and insects and wheat, were analyzed using a GC-MS coupled with an automatic headspace sampler. Wheat with fifteen percent moisture content was used in this study along with two different insect densities. Feasibility of the automatic headspace sampler in headspace analysis was found to be positive. The sampler can do sample conditioning, absorption, trap cleaning and desorption of the volatiles into the GC-MS and speed up the process. The samples extracted at 20 strokes with 1000 µL per stroke, and desorbed at 250°C gave a clear peak of compounds. The amount of volatiles produced by T. castaneum adults varied based on insect densities, the concentration of Methyl-1, 4-benzoquinone; Ethyl-1, 4-benzoquinone; and 1-Tridecene released by ten adult insects were 355, 390 and 530 µg/L compared to 300,310 and 210 µg/L of Methyl-1, 4-benzoquinone; Ethyl-1, 4-benzoquinone; and 1-Tridecene produced by five adult insects. Extreme high and low temperature leading to death produced very high amounts of volatiles compared to insects kept at 35°C. The larvae of the T. castaneum insects did not produce any volatiles at ambient condition as well as at extreme cold and warm conditions. The C. ferrugineus adults did not produced any detectable amount of volatiles even at the higher insect density after up to 3 days. The results of the combination of T. castaneum and C. ferrugineus insects gave the same volatile organic compounds as produced by T. castaneum insects alone. The 1-Tridecene produced by T. castaneum was not reported previously in other studies.
135

Modeling and Design of Spin Torque Transfer Magnetoresistive Random Access Memory

Huda, Safeen 15 November 2013 (has links)
This thesis presents the modeling and design of memory cells for Spin Torque Transfer Magnetoresistive Random Access Memory (STT-MRAM). The theory of operation of STT-MRAM cells is explored, and a model to predict the transient behaviour of STT-MRAM cells is presented. A novel three-terminal Magnetic Tunneling Junction (MTJ) and its associated cell structure is also presented. The proposed cell is shown to have guaranteed read-disturbance immunity, as during a read operation the net torque acting on the storage cell always acts to refresh the stored data in the cell. A simulation study is conducted to compare the merits of the proposed device against a conventional 1 Transistor, 1 MTJ (1T1MTJ) cell, as a well as a differential 2 Transistors, 2 MTJs (2T2MTJ) cell. Simulation results confirm that the proposed device offers disturbance-free read operation while still offering performance advantages over conventional cells.
136

Modeling and Design of Spin Torque Transfer Magnetoresistive Random Access Memory

Huda, Safeen 15 November 2013 (has links)
This thesis presents the modeling and design of memory cells for Spin Torque Transfer Magnetoresistive Random Access Memory (STT-MRAM). The theory of operation of STT-MRAM cells is explored, and a model to predict the transient behaviour of STT-MRAM cells is presented. A novel three-terminal Magnetic Tunneling Junction (MTJ) and its associated cell structure is also presented. The proposed cell is shown to have guaranteed read-disturbance immunity, as during a read operation the net torque acting on the storage cell always acts to refresh the stored data in the cell. A simulation study is conducted to compare the merits of the proposed device against a conventional 1 Transistor, 1 MTJ (1T1MTJ) cell, as a well as a differential 2 Transistors, 2 MTJs (2T2MTJ) cell. Simulation results confirm that the proposed device offers disturbance-free read operation while still offering performance advantages over conventional cells.
137

Rates and energetics of organic vapor sorption by soils

Schlanger, Joshua Lee 08 1900 (has links)
No description available.
138

Investigation of the potential for microbial reductive dechlorination of hexachlorobenzene under iron-reducing conditions

Doikos, Pavlos E. 12 1900 (has links)
No description available.
139

Magmatic volatiles: A melt inclusion study of Taupo Volcanic Zone rhyolites,New Zealand

Bégué, Florence January 2014 (has links)
The central segment of the Taupo Volcanic Zone (TVZ) is one of the world’s most productive areas of silicic volcanism and geothermal activity. Rhyolites largely predominate the eruptive output in the central TVZ, with only minor basalts, andesites and dacites. The rhyolites show diversity in composition, and form a compositional continuum between two end-member types (R1 and R2), as suggested in previous studies. In this thesis I present results from a quartz- (and rare plagioclase-) hosted melt inclusions study, focussing on the volatile concentration (i.e. H2O, Cl, F, CO2) and their relative distribution between R1 and R2 rhyolites. The main objective is to add further constraints on the magmatic systems with regard to their contribution to the hydrothermal systems in the central TVZ. A comparative study between R1 and R2 melt inclusions show distinct volatile, fluid-mobile, and highly incompatible element compositions. Differences in the bulk volatile concentration of the parental magmas (i.e. basalts intruding the lower crust) are suggested to be at the origin of these volatile disparities. Further analysis on the volatile exsolution of R1 and R2 melts lead to the observation that the two rhyolite types exsolve a volatile phase at different stages in their magmatic history. From Cl and H2O concentrations, it is suggested that R1 magmas exsolve a vapour phase first, whereas R2 rhyolites more likely exsolve a hydrosaline fluid phase. These results have considerable implications for the magmatic contribution into the hydrothermal systems in the central TVZ, as differences in the composition of the resulting volatile phase may be expected. The hydrothermal systems in the central TVZ are subdivided into two groups based on their gas and fluid chemistry; and the current model suggests that there are two distinct contributions: a typical ‘arc’ system, with geochemical affinity with andesitic fluids, located along the eastern margin of the TVZ, and a typical ‘rift’ system, with geochemical affinity with rhyolitic/basaltic fluids, located along the central and/or western region of the TVZ. The addition of the new data on the rhyolitic melt inclusions, leads to a re-evaluation of the magmatic contribution into the hydrothermal systems, with a particular focus on B and Cl. The results indicate a more diverse variety of contributions to the meteoric water in the hydrothermal systems, and also show that the east-west distribution of ‘arc’ and ‘rift’ fluids is not a viable model for the central TVZ. This work emphasises that melt inclusion data and their volatile degassing history cannot be underestimated when characterising and quantifying the magmatic component in hydrothermal fluids. The melt inclusion data also provide further insight into the pre-eruptive magmatic plumbing systems and are particularly important from a hazard perspective. Included in the thesis is a detailed petrological analysis of rhyolite melt inclusions across the central TVZ and an interpretation that large silicic magma systems (in the TVZ) are typically comprised of multiple batches of magma emplaced at some of the shallowest depths on Earth. Tectonic activity is suggested to play an important role in triggering large caldera-forming eruptions as the evacuation of one magma batch could cause a regional-scale readjustment that is sufficient enough to trigger and allow simultaneous eruption of an adjacent melt batch.
140

Environmental control of isoprene emission : from leaf to canopy scale

Pegoraro, Emiliano January 2005 (has links)
Isoprene is the most abundant volatile organic compound (VOC) emitted from vegetation, mainly trees. Because it plays an important role in tropospheric chemistry leading to formation of pollutants and enhancing the lifetime of the greenhouse gas methane, concern about the response of isoprene emissions to the rise in atmospheric CO2 concentration and global climate change has been increasing over the last few years. The consequences of predicted climate change will have complex repercussions on global isoprene emission. The increasing atmospheric CO2 per se will have direct effects on terrestrial vegetation since CO2 is the substrate of photosynthesis. Because photosynthesis is limited by CO2 at current ambient concentrations, an increase in CO2 is expected to increase leaf biomass (i.e. isoprene emitting surface). Predicted warmer climate, extended drought periods, the possible shift in plant species in favour of isoprene emitters and the increase in length of growing season, may cause an increase in global isoprene emissions with profound perturbations of air quality and the global carbon cycle. The aim of this thesis was to investigate the effect of environmental variables such as light, temperature, drought and leaf-to-air vapour pressure deficit (VPD), and the short- and long-term effect of atmospheric [CO2] on isoprene emission from temperate and tropical tree species. Both leaf and whole ecosystem level fluxes were studied. At the leaf scale, a short-term experiment with leaves of potted two-year old trees of Quercus virginiana was carried out, exposing plants to two drying-rewatering cycles. Leaf isoprene emission fell, but the process was considerably less sensitive to water stress than photosynthesis and stomatal conductance. In drought conditions, the large reduction in photosynthesis caused the percentage of fixed carbon lost as isoprene to increase as plants became more stressed, reaching peaks of 50% when photosynthesis was almost zero. Isoprene emissions also showed a strong negative linear relationship with pre-dawn leaf water potential (psi-leaf). In another experiment carried out at the large enclosed facility of Biosphere 2 (B2L, Arizona, USA), studying isoprene emission from leaves of three-year-old plants of Populus deltoides grown at three CO2 atmospheric concentrations (430, 800 and 1200 mu mol mol-1 CO2) in non-stressed conditions, instantaneous increases in atmospheric [CO2] always resulted in a reduction of isoprene emission and a stimulation of photosynthesis. Moreover, in the long-term, the CO2 inhibition effect for isoprene emission became a permanent feature for plants growing under elevated [CO2]. Again, isoprene emission was less responsive to drought than photosynthesis. Both water-stress and high VPD strongly stimulated isoprene emission and depressed photosynthetic rate as a result of stomatal closure and the resulting decreases in intercellular [CO2] (Ci). This also led to a dramatic increase in the proportion of assimilated carbon lost as isoprene. The effect of atmospheric elevated [CO2] and its interaction with high VPD and water stress on ecosystem gross isoprene production (GIP) and net ecosystem exchange of CO2 (NEE) in the Populus deltoides plantations was also studied. Although GIP and NEE showed a similar response to light and temperature, NEE was stimulated by elevated CO2 by 72% and depressed by high VPD, while GIP was inhibited by elevated CO2 by 58% and stimulated by high VPD. Similar to what was observed at leaf level, under water stress conditions GIP was stimulated in the short term and declined only when the stress was severe, whereas NEE started to decrease from the beginning of the experiment. This contrasting response led the percentage of assimilated carbon lost by the ecosystem as isoprene to increase as water stress progressed from 2.5% and 0.6% in well-watered conditions to 60% and 40% for the ambient and the elevated CO2 treatments, respectively. Again, we found water limitation and high VPD off-set the inhibitory effect of elevated CO2, leading to increased isoprene emissions. The effect of a mild water stress on GIP and gross primary production (GPP) was also observed in the model tropical rainforest mesocosm of B2L. Although GPP was reduced by 32% during drought, GIP was not affected and correlated very well with both light and temperature. The percentage of fixed C lost as isoprene tended to increase during drought because of the reduction in GPP. Consumption of isoprene by soil was observed in both systems. The isoprene sink capacity of litter-free soil of the agroforest stands showed no significant response to different CO2 treatments, while isoprene production was strongly depressed by elevated atmospheric [CO2]. In both mesocosms, drought suppressed the sink capacity, but the full sink capacity of dry soil was recovered within a few hours upon rewetting. In summary, elevated CO2 increased biomass production and photosynthesis while depressing isoprene production. However, both drought and VPD may off-set the CO2 effect and lead to enhanced isoprene emission. We conclude that the overall effect of global climate change could be of enhancing global isoprene emissions while depressing the soil sink, and that the soil uptake of atmospheric isoprene is likely to be modest but significant and needs to be taken into account for a comprehensive estimate of the global isoprene budget.

Page generated in 0.0391 seconds