• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DNAPL migration in variable aperture fractures : the development of a site investigation tool to measure fracture apertures applicable to DNAPL migration in situ in the Dumfries Aquifer, southwest Scotland

Steele, Adrian January 2000 (has links)
No description available.
2

Effects of the Desorption and Dissolution of Polycyclic Aromatic Hydrocarbons on Phytoremediation at a Creosote-Contaminated Site

Smartt, Helen Anne 14 November 2002 (has links)
Creosote, containing many high molecular weight hydrophobic polycyclic aromatic hydrocarbons (PAH's), is present in the subsurface environment at the Oneida Tie-Yard in Oneida, Tennessee. Phytoremediation using hybrid poplar trees was chosen as the remedial technology on-site. Since monitoring began, the contaminant plume has been shrinking consistently and evidence has shown that remediation is taking place. However, remediation may be rate-limited by the desorption and dissolution kinetics of the PAH's on-site. The objectives of this research are to: (1) estimate the desorption and dissolution rates of 10 PAH's found in the subsurface and (2) estimate the amount of each PAH and total mass of contaminant that is irreversibly sorbed to the soil. Three laboratory desorption and dissolution experiments were performed using contaminated soil samples from the Oneida Tie-Yard site. The first experiment was a batch desorption equilibrium experiment, the second was a batch desorption kinetics experiment, and the third was a soil column dissolution kinetics experiment. The target compounds in this study were: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, and benzo(b)fluoranthene. The resulting data for the desorption equilibrium experiment revealed that rates of equilibrium were truly not instantaneous in the systems studied. However, because approximately 76% of PAH's desorbed by the first sampling event (3 days), an equilibrium isotherm was considered appropriate. Results showed that there is a sorbed reversible concentration that readily desorbs to the aqueous phase for each PAH. Additionally, it was determined that the percent removal of sorbed PAH's decreases with increasing molecular weight. Desorption curves based on experimental data were found to exhibit linear behavior over large variations in aqueous concentration, but showed exponential behavior as concentrations approached zero. Freundlich sorption equilibrium isotherms for the 10 monitored PAH's on-site were generally found to have N coefficient values over 1, especially over large variations in solution phase concentration, indicating a non-uniform sorbent. Dissolution of resistant PAH's under field-like conditions was determined to occur over long periods of time. Dissolution rates calculated from experimental data were shown to generally decrease with increasing molecular weight. Overall, desorption and dissolution kinetics of PAH's were shown to be rate-limiting factors to remediation at the Oneida Tie-Yard. / Master of Science
3

Geotechnical properties of Kaolinite contaminated with a non-aqueous phase liquid

Goff, Mary Kathlyn 07 July 2011 (has links)
Contaminated sites are found all around the world. In order to contain these contaminants, engineers propose capping the contaminated sediments with a sand cap. When capping these contaminants, the sand causes consolidation to occur and could cause a slope failure if the contaminants were on a slope. Investigating the properties of these contaminated sediments allows for proper analysis of a slope failure. The primary objective of this research was to determine the shear strength of contaminated sediments. Since soil samples from actual contaminated sites are highly variable and difficult to explain, the soil used in this research project was mixed and controlled in the lab. A mixture of Kaolinite, water and mineral oil (NAPL, non-aqueous phase liquid) was used for the specimens. Different oil amounts were placed into the specimens to create different scenarios. The different oil combinations included: 100% water, 100% oil, 90% oil, 70% oil, and 50% oil. All of the specimens were fully saturated, and the specimens that had less than 100% oil contained water in the remaining percentage. Consolidated Undrained and Consolidated Drained triaxial tests were performed on the specimens. The constructed specimens were subjected to consolidation stages ranging from 0.6psi to 29psi in confining pressure. The main focus of the study was on low confining pressures. After consolidation the specimens were sheared either undrained or drained. Both tests were utilized in order to see the difference in the pore pressures generated. Failure envelopes were developed for the different oil contents that contained three dimensions included the shear strength, the effective stress, and the pore pressure difference between the pore oil pressures and the pore water pressures. Also, the behavior of oil-dominated versus water-dominated was determined. Results from the 100% water specimens were comparable to previous data. The shear strength for the 100% oil specimens was higher than the 100% water specimens, but lower than the 90% oil and 70% oil specimens. The 50% oil specimens resulted in a great deal of variability on whether the specimen was water-dominated or oil-dominated. The main conclusion was that the Kaolinite had an increase in strength with the introduction of mineral oil. / text
4

Multiphase Contamination in Rock Fractures : Fluid Displacement and Interphase Mass Transfer / Flerfasföroreningar i sprickigt berg : Utbredning och massöverföring mellan faser

Yang, Zhibing January 2012 (has links)
Multiphase flow and transport in fractured rock is of importance to many practical and engineering applications. In the field of groundwater hydrology an issue of significant environmental concern is the release of dense non-aqueous phase liquids (DNAPLs) which can cause long-term groundwater contamination in fractured aquifers. This study deals with two fundamental processes – fluid displacement and interphase mass transfer – concerning the behavior of the multiphase contaminants in fractured media. The focus of this work has been placed on improving the current understanding of small-scale (single fracture) physics by a combined effort of numerical modeling analysis, laboratory experiments and model development. This thesis contributes to the improved understanding through several aspects. Firstly, the effect of aperture variability, as characterized by geostatistical parameters such as standard deviation and correlation length, on the DNAPL entrapment, dissolution and source-depletion behaviors in single fractures was revealed. Secondly, a novel, generalized approach (adaptive circle fitting approach) to account for the effect of in-plane curvature of fluid-fluid interfaces on immiscible fluid displacement was developed; the new approach has demonstrated good performance when applied to simulate previously published experimental data. Thirdly, the performance of a continuum-based two-phase flow model and an invasion percolation model was compared for modeling fluid displacement in a variable-aperture fracture and the dependence of fracture-scale capillary pressure – saturation relationships on aperture variability was studied. Lastly, through experimental studies and mechanistic numerical modeling of DNAPL dissolution, kinetic mass transfer characteristics of two different entrapment configurations (residual blobs and dead-end pools) were investigated. The obtained understanding from this thesis will be useful for predictive modeling of multiphase contaminant behavior at a larger (fracture network) scale. / Flerfasflöde och ämnestransport i sprickigt berg är av betydelse för många praktiska och tekniska problem. Tunga, svårlösliga organiska vätskor (engelska: dense non-aqueous phase liquids: DNAPLs; t.ex. klorerade lösningsmedel) kan orsaka långvarig förorening av vattenresurser, inklusive akviferer i sprickigt berg, och utgör ett viktigt miljöproblem inom grundvattenhydrologin. Denna studie behandlar två fundamentala processer för spridning av flerfasföroreningar i sprickiga medier – utbredning av den organiska vätskan och massöverföring mellan organisk vätska och vatten. Arbetet har fokuserat på att förbättra nuvarande kunskap om de fysikaliska processerna på liten skala (enskilda sprickor) genom en kombination av numerisk modellering, laboratorieexperiment och modellutveckling. Avhandlingen har bidragit till utökad processförståelse i flera avseenden. För det första har arbetet belyst effekterna av sprickaperturens variabilitet, uttryckt med geostatistiska parametrar som standardavvikelse och rumslig korrelationslängd, på fastläggning och lösning av organiska vätskor i enskilda sprickor, samt utmattningsbeteendet hos dessa källor till grundvattenförorening. För det andra har en ny, generell metod (adaptiva cirkelpassningsmetoden) för att ta hänsyn till effekten av krökningen av gränsytan mellan organisk vätska och vatten i sprickplanet utvecklats; denna metod har visats fungera väl i simuleringar av tidigare publicerade experimentella data. För det tredje, har en jämförelse gjorts mellan en kontinuumbaserad tvåfasflödesmodell och en invasions-perkolationsmodell med avseende på hur väl de kan simulera tvåfasflöde i en spricka med varierande apertur. Här studerades även hur relationen mellan kapillärtryck och mättnadsgrad på sprickplansskala beror av variabiliteten i sprickapertur. Till sist undersöktes lösning av den organiska vätskan i grundvatten för två fastläggningsscenarier (fastläggning i immobila droppar och ansamling i fällor – ”återvändssprickor”) både genom experiment och mekanistisk numerisk modellering. Kunskapen som tagits fram i denna avhandling bedöms vara användbar även för att modellera spridningen av flerfasföroreningar på större (spricknätverks-) skalor.
5

<i>In Situ</i> Chemical Oxidation Schemes for the Remediation of Ground Water and Soils Contaminated by Chlorinated Solvents

Li, Xuan 02 July 2002 (has links)
No description available.
6

Computational Tools for Improved Analysis and Assessment of Groundwater Remediation Sites

Joseph, Joshua Allen Jr. 06 August 2008 (has links)
Remediation of contaminated groundwater remains a high-priority national goal in the United States. Water is essential to life, and new sources of water are needed for an expanding population. Groundwater remediation remains a significant technical challenge despite decades of research into this field. New approaches are needed to address the most severely-polluted aquifers, and cost-effective solutions are required to meet remediation objectives that protect human health and the environment. Source reduction combined with Monitored Natural Attenuation (MNA) is a remediation strategy whereby the source of contamination is aggressively treated or removed and the residual groundwater plume depletes due to natural processes in the subsurface. The USEPA requires long-term performance monitoring of groundwater at MNA sites over the remediation timeframe, which often takes decades to complete. Presently, computational tools are lacking to adequately integrate source remediation with economic models. Furthermore, no framework has been developed to highlight the tradeoff between the degree of remediation versus the level of benefit within a cost structure. Using the Natural Attenuation Software (NAS) package developed at Virginia Tech, a set of formulae have been developed for calculating the TOR for petroleum-contaminated aquifers (specifically tracking benzene and MTBE) through statistical techniques. With the knowledge of source area residual saturation, groundwater velocity, and contaminant plume source length, the time to remediate a site contaminated with either benzene or MTBE can be determined across a range of regulatory maximum contaminant levels. After developing formulae for TOR, an integrated and interactive decision tool for framing the decision analysis component of the remediation problem was developed. While MNA can be a stand-alone groundwater remediation technology, significant benefits may be realized by layering a more traditional source zone remedial technique with MNA. Excavation and soil vapor extraction when applied to the front end of a remedial action plan can decrease the amount of time to remediation and while generally more expensive than an MNA-only approach, may accrue long-term economic advantages that would otherwise be foregone. The value of these research components can be realized within the engineering and science communities, as well as through government, business and industry, and communities where groundwater contamination and remediation are of issue. Together, these tools constitute the Sâ ªEâ ªEâ ªPâ ªAGE paradigm, founded upon the concept of sound science for an environmental engineering, effectual economics, and public policy agenda. The TOR formulation simplifies the inputs necessary to determine the number of years that an MNA strategy will require before project closure and thus reduces the specialized skills and training required to perform a numerical analysis that for one set of conditions could require many hours of simulation time. The economic decision tool, that utilizes a life cycle model to evaluate a set of feasible alternatives, highlights the tradeoffs between time and economics can be realized over the lifetime of the remedial project. / Ph. D.

Page generated in 0.0867 seconds