• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 6
  • 6
  • 5
  • 1
  • Tagged with
  • 38
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Regulatory Capacity of Bivalent Genes: A Theoretical Approach

Thalheim, Torsten, Herberg, Maria, Löffler, Markus, Galle, Jörg 07 February 2024 (has links)
Bivalent genes are frequently associated with developmental and lineage specification processes. Resolving their bivalency enables fast changes in their expression, which potentially can trigger cell fate decisions. Here, we provide a theoretical model of bivalency that allows for predictions on the occurrence, stability and regulatory capacity of this prominent modification state. We suggest that bivalency enables balanced gene expression heterogeneity that constitutes a prerequisite of robust lineage priming in somatic stem cells. Moreover, we demonstrate that interactions between the histone and DNA methylation machineries together with the proliferation activity control the stability of the bivalent state and can turn it into an unmodified state. We suggest that deregulation of these interactions underlies cell transformation processes as associated with acute myeloid leukemia (AML) and provide a model of AML blast formation following deregulation of the Ten-eleven Translocation (TET) pathway
32

Design and Synthesis of Novel Benzodiazepines

MacQuarrie, Stephanie Lee 05 January 2006 (has links)
Bivalent drug design is an efficient strategy for increasing potency and selectivity of many drugs. We devised a strategy to prepare agonist-benzodiazepine heterodimers that could simultaneously bind to agonist and BZD sites of the GABAAR. We synthesized a benzodiazepine-MPEG model compound that relied on physiological GABA to elicit flux. We established that a tether at the N1 position of the BZD would not prevent binding to the receptor. However, coupling of GABA amides with long chain PEG tethers studied by another group member resulted in complete loss of agonist activity. We therefore ceased research in this particular area. 1,4-Benzodiazepin-2,5-diones display a wide range of pharmacological activities. Compounds containing the tricyclic proline-derived subtype have received attention as potent anxiolytic agents and as starting materials for anthramycin-inspired anticancer agents. More recently enantiopure (S)-proline-derived 1,4-benzodiazepin-2,5-diones have been recognized as selective α5 GABAA receptor ligands. Despite the impressive diversity of 1,4-benzodiazepine-2,5-diones prepared to date, enantiopure examples possessing a quaternary stereogenic center have been largely unexplored. "Memory of chirality" (MOC) is an emerging strategy for asymmetric synthesis. This technique enables the memory of a sole chiral center in the substrate to be retained in a process that destroys that center. We have used this technique to prepare a library of quaternary proline-derived, thioproline-derived and hydroxyproline-derived 1,4-benzodiazepin-2,5-diones, in high ee. We have developed an efficient synthetic method for preparing oxaproline-derived 1,4-benzodiazepin-2,5-diones in high yields, and by applying the MOC strategy we have prepared quaternary derivatives in acceptable %ee. We envision oxaproline-derived 1,4-benzodiazepin-2,5-diones may exhibit similar or more potent pharmacological properties than proline-derived 1,4-benzodiazepin-2,5-diones. Using density functional theory (DFT) methods, we modeled the formation of an enantiopure, dynamically chiral enolate intermediate and the slow racemization of the enolate on the alkylation reaction time scale. / Ph. D.
33

Synthesis of Bivalent and Monovalent Sugar Ligands, their Interfacial and Solution Phase Lectin Bindng Studies

Murthy, Bandaru Narasimha 10 1900 (has links) (PDF)
Carbohydrate-protein interactions are responsible for several biological functions. While these interactions maintain high levels of specificities, the binding strength of individual carbohydrate-protein recognitions are weak, with dissociation constants (Kd) ~10-3-10-6 M. In order to increase the binding strengths meaningful to physiological functions, multivalent, clustered patches of carbohydrate ligands are required. Synthetic glycoclusters contribute in a significant manner to understand the fine details of the weak carbohydrate-protein interactions. The extent of clustering of the ligands, spatial, topological orientations and the nature of the scaffolds are prominent issues to address the carbohydrate-protein interactions in general. Chapter 1 of the Thesis presents a summary of the synthetic cluster glycosides, mechanisms and energetics of their interactions with lectins. The presence of several ligands within the molecular scaffold is not sufficient, rather there exists a critical demand on the spatial disposition of the individual ligands in the multivalent ligand system to achieve enhanced binding affinities. In order to assess the multivalent effects, influence of linkers and the spatial disposition of the ligands, a systematic study was undertaken, involving a series of the most minimal of the multivalent sugar ligand system, namely, the bivalent sugar ligands. In a programme, it was desired to study the bivalent and monovalent sugar ligand-lectin interactions in a two-dimensional membrane model system. An appropriate model system was the Langmuir monolayer formations of the sugar ligands and their recognitions of the lectins at the interface. A series of bivalent and monovalent glycolipids were thus designed and synthesized. Molecular structure of the ligands utilized to study the lectins binding behavior at the air-water interface are presented in Figure 1. The sugar density dependent lectin binding at the air-water interface caused by the glycolipids was studied in detail. Prior to lectin binding studies, the monolayer behavior of the glycolipids (GL), non-sugars (NS) and their mixtures were assessed. It was observed that the apparent molecular areas of the mixed monolayers increased with increasing percentage of the glycolipid in the mixed monolayer. Interactions of the glycolipid mixed monolayers with lectin were assessed at a constant surface pressure of 10 mN/m. The adsorption kinetics of the lectin concanavalin A (Con A) with the mixed monolayers was monitored by the surface area variation (ΔA) as a function of time. The detailed studies showed a maximum increase in ΔA of 10% of the bivalent glycolipids in the mixed monolayer and a ΔA of 20% of the monovalent glycolipids (Figure 2). With both bivalent and monovalent glycolipids, change in the area per molecule had decreased progressively with higher percentage of the glycolipids in the monolayers. On the other hand, with ethylene glycol spacers, the relative responses and the amount of bound lectin increased. Figure 2. Ligand-lectin interactions at the air-water interface as a function of the percentage of (a) bivalent glycolipids and (b) monovalent glycolipids in the mixed monolayers. To verify the specificity of these interactions, the mannopyranoside non-specific lectin, namely, wheat germ agglutinin (WGA) was tested and there were no deviations in the ΔA for various ratios of the sugar–non-sugar mixed monolayers. The study established that (i) maximal binding of the lectin to the bivalent glycolipids occurred at lower sugar densities at the interface than that for the monovalent glycolipids and (ii) the surface presenting sparsely populated sugar residues are efficient for a lectin binding. Chapter 2 presents the details of synthesis and ligand-lectin interactions at the air-water interface, relevant in the two-dimensional membrane model system. A study of the multivalent effects originating through glycolipid micelles and their lectin interactions was undertaken in another programme. The kinetic studies of the glycolipid micelles-lectin interactions were conducted with the aid of surface plasmon resonance (SPR) technique. Prior to the SPR studies, the critical micellar concentration (CMC), aggregation number and the hydrodynamic diameter of each glycolipid (GL-1 to GL-6, Figure 1) micelles were determined. The glycolipid micelles were used as the analytes on a Con A immobilized surface. The sensorgrams obtained for the interaction of the various glycolipid micelles with Con A are presented in Figure 3. Figure 3. Sensorgrams obtained for the binding of various glycolipids micelles to a Con A immobilized surface, at a constant glycolipid concentration of 250 µM. The kinetic studies of the interactions were performed and the analysis showed that the bivalent analyte model provided a better fitting for the interaction sensorgrams. The analysis revealed that the ka1/kd1 values remained largely uniform for all the glycolipids, whereas the ka2/kd2 values were about two orders of magnitude larger for the bivalent glycolipid (GL-4 to GL-6) micelle-lectin interactions than for the monovalent series (GL-1 to GL-3) (Table 1). From the SPR studies, it emerged that the additional sugar unit in the bivalent glycolipid micelles provided a favorable complexation between the sugar ligand and the lectin. Further, the glycolipid micelles mediated layer-by-layer Con A multilayer formation was also studied by SPR and atomic force microscopy (AFM) methods. Chapter 3 provides the SPR studies of glycolipid micelles-lectin interactions. A study of the monomolecular recognitions of the mono- and bivalent sugar ligands 1-8 (Figure 4) to a lectin was undertaken subsequently. The kinetic studies of the bivalent vs monovalent ligands during lectin binding were conducted by employing the SPR technique, for which the sugar ligands 1-6 were used as the analytes on a lectin coated sensor surface. Figure 4. Structures of the mono- and bivalent sugar ligands 1-8 and the NS derivative. The following observations were made from the SPR analysis. (i) Within the mono- and bivalent series, the response units increased in the series 1–3 and 4–6; (ii) the equilibrium responses were attained within 105 seconds in the monovalent ligands and (iii) the association response gradually increased for the bivalent ligands 5 and 6 and reached an equilibrium after ~3 min. An important outcome of the kinetic studies was the identification of ka and kd for the monomolecular interactions, that were distinctly different for the bivalent ligands. Specifically, the ka was significantly faster and kd was slower for bivalent sugar ligands, in comparison to the monovalent sugar ligands (Table 2). Table 2. SPR derived kinetic parameters for the interactions of sugar ligand to a Con A immobilized surface at 25 oC. Isothermal titration calorimetry (ITC) studies were also conducted, in order to correlate the functional valencies and the thermodynamic parameters. The studies were conducted at ligand concentrations much below their CMCs. The general observations from the ITC studies were that the binding site saturations were slower for the monovalent sugar ligands, in comparison to the bivalent sugar ligands. It was observed that the binding affinities of bivalent ligands 5 and 6 enhanced ~5 times higher than the monovalent ligands 2 and 3 (Table 3). The effective linker length, which allowed the sugar ligands to be functionally active, was determined to be ~15 Å and this separation was necessary for the intermolecular cross-linking formation. The dynamic light scattering (DLS) study of the bivalent ligands 5 or 6-lectin complexes showed the presence of intermolecular cross-linked complexes that existed in solution from the initial stages of the binding process. Upon realizing the nanometric diameters of the sugar ligand-lectin complex, an attempt was undertaken to visualize the complexes by transmission electron micoscopy (TEM). In TEM, 4-Con A complex exhibited particle sizes in the range of 5-10 nm, matching nearly the size of the lectin alone. On the other hand, 5–Con A and 6–Con A complexes provided sizes varying between 20¬150 nm. These particle sizes corresponded to similar aggregate sizes derived from the DLS studies. Chaper 4 describes the kinetic, thermodynamic, DLS and TEM studies of sugar ligand-lectin intearctions. Table 3. Binding stoichiometries and thermodynamic parameters of the sugar ligand-Con A interactions at 25 oC.a Ligand n Ka (x 10 -4) ΔG ΔH TΔS 1 0.91 9.14 ( ± 0.75) -6.76 -3.39 3.37 2 1.01 5.76 (± 0.80) -6.49 -3.98 2.51 3 1.09 7.06 (± 1.23) -6.61 - 3.01 3.60 4 1.10 5.75 (± 0.27) -6.49 - 6.39 0.10 5 0.50 20.6 (± 1.7) -7.59 - 12.80 -5.21 6 0.47 37. 4 (± 2. 4) -7.61 -11.54 -3.93 7 1.03 0.86 (± 0.06) -5.36 -7.9 -2.62 8 1.05 2.48 (± 0.12) -5.99 -6.3 -0.32 MeαMan 1.04 0.79 (± 0.04) -5.27 -7.83 -2.56 Ka is in the unit of M-1; ΔG, ΔH and TΔS are in the units of kcal mol-1. Errors in ΔG are ~1-4%. Errors in ΔH are in the range of 1-8%. Errors in TΔS are in the range of 1-6 %. A study was undertaken further to assess the kinetic interactions of the tumor-associated T-antigen with a lectin. Synthesis of amine-tethered T-antigen and lactose derivatives (Figure 5) were accomplished and an assessment of their kinetic interactions with lectin peanut agglutinin (PNA) was conducted. Figure 5. Structures of the amine-tethered T-antigen, lactose and mannose derivatives. The lectin PNA was used as the analyte onto the sugar ligand immobilized surfaces. It was found that the interaction with T-antigen showed higher response units than the lactose derivative (Figure 6). The kinetic studies of PNA with immobilized T-antigen and the lactose derivatives demonstrated that the binding followed a bivalent analyte model of the interaction. The T-antigen derivative interacted with the lectin and relatively faster association (ka) and a slower dissociation (kd) were observed, in comparison to the lactose derivative. The ratio of second binding kinetic constants (ka2/kd2) was observed higher than the first binding kinetic constants (ka1/kd1). Further, the ITC studies were conducted, in order to provide the thermodynamic parameters governing the lectin-T-antigen interactions. The combined approach of SPR and ITC studies showed that the T-antigen derivative exhibited a higher binding affinity to PNA than the lactose derivative. Chapter 5 presents synthesis of the T-antigen and lactose derivatives and studies of their lectin interactions. In summary, the thesis provides a detailed insight into the kinetic and thermodynamic parameters of the bivalent sugar ligand-lectin interactions, in comparison to the monovalent sugar ligands. Langmuir monolayer formation of the sugar ligands and the assessment of their lectin binding at the air-water interface demonstrated that the surface presenting sparsely populated sugar residues are efficient for a lectin binding. The kinetic studies of various glycolipid micelles-lectin interactions showed that the additional sugar unit in the bivalent glycolipid micelles provided a favorable complexation between the sugar ligand and the lectin. The detailed monomolecular kinetic studies showed that the bivalent sugar ligands underwent a faster association (kon) and a slower dissociation (koff) of the ligand-lectin complexes. The ITC studies on sugar ligand-lectin interactions led to identify not only the thermodynamic parameters, but also the influence of the hydrophobic alkyl units and the linker moieties. The DLS and TEM characterizations of sugar ligand-lectin complexes showed the status of the complexation, sizes and the morphologies. The studies were extended further to tumor associated T-antigen-lectin interactions. Overall, the Thesis establishes the most minimal multivalent sugar ligands, namely, the bivalent sugar ligand-letin interactions. The studies presented in the Thesis should be useful to design multivalent sugar ligands for highly avid lectin interactions and also to raise possibilities for the construction of defined lectin oligomers, facilitated through the multivalent sugar ligand-lectin cross-linking interactions.
34

Energetická účinnost tepelných čerpadel / Energy efficiency of heat pumps

Bártů, Marek January 2016 (has links)
This diploma thesis deals with the energy efficiency of heat pumps, especially efficiency of air/water system. In the this thesis is simply described the principle of the heat pump and function of each component. It shows the issues of determining the parameters of performance of the heat pump and also describes verification in according to applicable standards. The diploma thesis gives an analysis of determining the energetical efficiency and calculation of coefficient of performance, in other words, the seasonal heating coefficient of performance. Seasonal energy efficiency of selected samples of heat pumps for the heating season is designated for specific climatic conditions.
35

Návrh vytápění rodinného domu pomocí tepelného čerpadla / Space heating of a single family home with a heat pump

Železný, Jan January 2016 (has links)
The master’s thesis contains design for heat insulation of a family house for purpose of reducing the heat loss, adding a new room and complete design of heating system. First part is introducing the house, followed by calculating the heat loss for the original building. Next step proposes the heat insulation of constructions, design for the new room and recalculating the modified heat loss including comparison with the original values. Another part is dealing with the design of the heating system, providing calculations of the power requirement and the pressure loss of underfloor heating and panel radiators. After that there was the selection of the heat pump, bivalent heat source, choice of storage tank and solution for domestic water heating. In the last part the security components were checked, drawing documentation were created and attached and the calculation of return on investment was made.
36

Novel approaches towards vaccine developments against porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus

Pineyro Pineiro, Pablo Enrique 06 November 2015 (has links)
Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease (PCVAD). Porcine reproductive and respiratory syndrome (PRRS) is caused by PRRS virus (PRRSV). Both PCV2 and PRRSV have caused devastating diseases in the swine industry worldwide, resulting in immense economic losses. One of the most common co-infections in the swine industry is PCV2 and PRRSV. The aim of this dissertation research is to explore different experimental approaches to develop novel vaccines against the two major pathogens affecting swine production and study the basic mechanisms that may be involved in viral pathogenesis. Two types of porcine circovirus (PCV), PCV1 and PCV2, have been identified thus far. PCV1, first identified as a contaminant of the PK-15 cell line, is non-pathogenic and has a low prevalence in swine herds. PCV2 is highly prevalent in most swine-producing countries and is associated with clinical PCVAD. The non-pathogenic PCV1 shares similar genomic organization with PCV2. Previously, it has been demonstrated that a genetically modified infectious chimeric PCV1-2a virus can tolerate up to a 27 aa insertion in the C-terminus of the ORF2 without affecting infectivity and produce a dual immune response against PCV2cap and the inserted epitope tag. Therefore, we evaluated the use of the non-pathogenic PCV1 wild-type (wt) virus and chimeric PCV1-2a vaccine virus (vs) to express four known B-cell epitopes of PRRSV. Peptide epitopes of PRRSV-VR2385, including GP2II (aa 40–51, ASPSHVGWWSFA), GP3I (aa 61–72, QAAAEAYEPGRS), GP5I (aa 35–46, SSSNLQLIYNLT), and GP5IV (aa 187–200, TPVTRVSAEQWGRP) were inserted in frame into the C-terminus of the ORF2 of PCV1wt as well as the PCV1-2avs. Four PCV1-PRRSVEPI chimeric viruses and four PCV1-2a-PRRSVEPI chimeric viruses were successfully rescued and shown to be infectious in vitro and co-expressed PCV1cap or PCV2cap with each specific PRRSV epitope. Two independent animal studies were conducted to evaluate whether the non-pathogenic PCV1 can serve as a vaccine delivery vector and whether the PCV1-2a vaccine virus can be used to develop a bivalent vaccine against both PCV2 and PRRSV. We demonstrated that three PCV1-PRRSVEPI chimeric viruses and two PCV1-2a-PRRSVEPI chimeric viruses were infectious in pigs. Importantly, we demonstrated that the PCV1-PRRSVEPI and PCV1-2a-PRRSVEPI chimeric viruses not only induced specific PCV1 or PCV2 IgG antibody but also specific anti-PRRSV epitope antibody responses as well. Regardless of the PCV backbone used, we showed that the PCV-PRRSV chimeric viruses elicited neutralizing antibodies against PRRSV-VR2385. These results provided a proof of concept for the potential use of the non-pathogenic PCV1 as a vaccine delivery system for PRRSV or other swine pathogens and the use of PCV1-2a vaccine virus to generate a bivalent vaccine against both PCV2 and PRRSV. PRRSV causes a persistent infection and immunosuppression. Immunomodulation of the host immune system is caused by modulation of numerous interleukins, such as type I interferons, tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and interleukin-12 (IL-12) in infected pigs. Antigen-presenting cells (APCs) are the first line of defense, and their infection plays an important role in innate-mediated immune regulation during early immune responses. Among the APCs, pulmonary alveolar macrophages (PAMs), pulmonary interstitial macrophages (PIMs), and dendritic cells (DCs) are the main targets for PRRSV replication. The role of PRRSV-DCs interaction is not fully understood, and current research focuses on the production and regulation of interferons through DC-SIGN receptors. In this study, we evaluated the immunomodulation of MoDCs by PRRSV through interactions with the pDC-SIGN receptor, by blocking pDC-SIGN with recombinant hICAM-3-Fc or anti-pDC-SIGN mAb. Our results indicate that recombinant hICAM-3-Fc enhances mRNA expression of proinflammatory cytokines and that anti-pDC-SIGN mAb inhibits mRNA expression of TNF-α and IL-1α and enhances the expression of IL-12 induced by PRRSV in MoDCs. The results will help understand the molecular mechanisms of PRRSV pathogenesis. / Ph. D.
37

Využití odpadního tepla provozu Špitálka / Utilization of Waste Heat from Heating Plant Spitalka

Hromádka, Martin January 2018 (has links)
This master’s thesis deals with utilization of waste heat from heating plant Spitalka. The aim of the thesis is to explain the general principle of the operation of the heating plants, respectively the heating circuit, then to describe the operation of heating plant Spitalka and to try to identify possible sources of waste heat. Other goals are to make the calculation of waste heat and to make the proposal for its utilization. The final aim of the thesis was to design technological device for utilization of waste heat and to carry out economic evaluation. The master’s thesis describes the principle of functioning of the heating circuit. It explains the issue of combined heat and power production, the principle of functioning of the main technological elements, but also the ecology of operation or distribution of heat through the district heating. Then there is a description of the heating plant Spitalka. The thesis also deals with the water treatment and the description of the technological circuit from the beginning to the distribution to the customer. Next, the waste heat source is identified as water in a closed cooling circuit. The amount of this heat energy is calculated and suggestions for its possible utilization are made. As an application, there are selected two systems, heating and domestic hot water heating. The heating is made by heat pump. Based on the calculations, a heating system using two heat pumps in a bivalent way of connection was designed. In conclusion, the results of the design of the heating system are summarized and an economic evaluation is carried out.
38

Návrh otopné soustavy s tepelným čerpadlem vzduch-voda v kombinaci s bivalentním zdrojem / Design of a space heating system with an air-water heat pump and bivalent heat source

Skočík, Lukáš January 2015 (has links)
The thesis is engaged in complete reconstruction of a heat system of a family house with higher heat loss, i.e. heat source, piping and radiators. As a heat source is chosen air-water heat pump. Heat system is designed with panel radiators with regard to minimum building interventions. A required power for hot water heating is calculated and selected a heat pump from suitable power range in combination with storage tank with hot water tank. The bivalent point is determined, as backup source are heating elements installed in storage tank. Drawings and circuit diagrams with safety elements are attached. In the end is calculation of estimated return.

Page generated in 0.0643 seconds