• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 74
  • 36
  • 14
  • 7
  • 6
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 290
  • 46
  • 44
  • 38
  • 33
  • 31
  • 30
  • 29
  • 23
  • 20
  • 19
  • 19
  • 19
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Study on Architecture-Oriented Memory Assembly and Testing OEM Factory Manufacturing Resource Planning Management Model

Hsu, I-Cheng 12 June 2012 (has links)
Memory assembly and testing OEM as the IC semiconductor backend process by Taiwan conducts 30% manufacturing output globally. Mainly 50% of the output focused on DRAM. The quality and shipping were headed as the key factor all over the world. The manufacturing process improved in South Korea and mainland China accompanied with the raw material price rising after the 311 earthquake in Japan, enterprises encountering enormous challenge so their OEM manufacturing needs to incorporate the copper wiring process and lower the cost to enhance the competitiveness. The rush orders exhausted the DRAM on-hand parts after economic recovery during the first half of 2011. The shortage mainly came from raw materials, human resources and equipments. Precise planning with elastic resource and information system control became the top priority. Therefore as Elpida, the DRAM manufacturer in Japan, filed the bankruptcy protection, memory assembly and testing OEM manufacturers should be paced in tuning the policy of enterprise, organization, production elements and information system to face the rapid global economic environments change. We propose architecture-oriented memory assembly and testing OEM factory manufacturing resource planning management model (AOMATOEMFMRPMM) in this study. AOMATOEMFMRPMM is an enterprise architecture which uses structure-behavior coalescence to define the components, operations and task forces during the planning of the manufacturing resources. AOMATOEMFMRPMM lets corporation supervisors understand and manipulate effectively the manufacturing resources, lessen the risk of re-organization, improve the quality of maintenance and efficiency of communication of the information system.
192

Fabrication, stabilité et propriétés rhéologiques des émulsions stabilisées par des particules colloïdales

Arditty, Stéphane 28 September 2004 (has links) (PDF)
Les émulsions stabilisées par des particules minérales présentent des propriétés originales en raison du caractère « solide » des interfaces. La première partie du manuscrit décrit la fabrication d'émulsions monodisperses, de taille allant du micromètre au centimètre, via un mécanisme de croissance homogène (coalescence limitée). Ces émulsions modèles sont concentrées par centrifugation et l'on mesure la relation entre la pression osmotique et la fraction volumique des gouttes. Les résultats sont interprétés en considérant le caractère « solide » des interfaces (élasticité, plasticité) lié à la forte attraction latérale qui existe entre les particules adsorbées. Les propriétés de surface sont explorées indépendamment en mesurant la déformation de gouttes isolées soumises à un cisaillement contrôlé. Enfin, les propriétés rhéologiques des émulsions à interfaces « solides » sont comparées à celles des émulsions stabilisées par des tensioactifs, à interfaces « fluides ».
193

Application of the HLD and NAC Models to the Formation and Stability of Emulsions

Kiran, Sumit K. 10 January 2014 (has links)
This thesis explored how asphaltene and naphthenic amphiphile species influence the formation (morphology and size) and stability of heavy crude oil (bitumen) emulsions. It was experimentally shown that asphaltenes produce water-in-oil emulsions. Naphthenic amphiphiles on the other hand flip the emulsion morphology to oil-in-water. It was further demonstrated that the size and stability of these emulsions is influenced by physicochemical effects such as the pH, solvent-bitumen-water ratios, solvent aromaticity, and temperature. In view of these findings, the hydrophilic-lipophilic deviation (HLD) and net-average curvature (NAC) models were looked at as potential means for predicting the formation and stability of emulsions. Owing to the complexity of bitumen emulsions, however, the HLD and NAC models were instead tested against well-defined sodium dihexyl sulfosuccinate-toluene-water emulsions. The morphologies of these emulsions were predicted as a function of the formulation salinity whereas corresponding droplet sizes were predicted as a function of the continuous phase density and interfacial tension (γow). Emulsion stability trends were in turn predicted using a collision-coalescence-separation assumption. From this assumption, emulsion stability was expressed as a function of the emulsion droplet collision frequency and activation energy. The key parameters of the highly scrutinized activation energy term included the γow, interfacial rigidity, and critical film thickness. In applying the same modeling approach to the stability of other emulsions already published in the literature, it was found that the rigidity of adsorbed multilayer/liquid crystal films cannot yet be fully accounted for. This shortcoming was the reason for which only minimum stability times were reported for bitumen emulsions.
194

Ductile damage characterization in Dual-Phase steels using X-ray tomography

Landron, Caroline 21 December 2011 (has links) (PDF)
Dans le cadre du développement de nuances d'aciers toujours plus performantes en termes de résistance à l'effort et à l'endommagement, les aciers Dual-Phase (DP) présentent un bon compromis résistance/ductilité. Cependant, il est nécessaire de disposer de meilleures connaissances concernant les mécanismes menant à la rupture de tels aciers. Les mécanismes d'endommagement ont ainsi été étudiés dans cette thèse à l'aide de la tomographie aux rayons X. Des essais de traction in-situ ont été réalisés sur plusieurs nuances d'aciers DP, un acier ferritique et un acier martensitique afin de caractériser chaque étape de l'endommagement ductile. Des observations qualitatives et des données quantitatives concernant la germination de l'endommagement, la croissance des cavités et la coalescence ont été recueillies lors de ces essais. Ces données quantitatives ont ensuite été utilisées pour le développement et/ou la validation de modèles d'endommagement. Une prédiction de la cinétique de germination a ainsi été proposée et la version du modèle de croissance de cavités de Rice et Tracey corrigée par Huang et prenant mieux en compte l'effet de la triaxialité a été validée expérimentalement. L'étape de coalescence des cavités menant à la rupture des matériaux a pour la première fois été caractérisée de façon quantitative dans un matériau industriel et des critères de coalescence ont été appliqués localement sur les couples de cavités présentes dans le matériau. L'utilisation de ces modèles analytiques a permis une meilleure compréhension des propriétés agissant sur les phénomènes mis en jeu. L'effet de la part cinématique de l'écrouissage sur la germination et la croissance de l'endommagement a notamment été souligné et validé par des essais de chargements complexes.
195

Emboitement de compétences relatives aux transports publics et frontières institutionnelles dans une agglomération multipolaire : le cas des Alpes-Maritimes.

Courteix, Julian 02 July 2013 (has links) (PDF)
La coordination des institutions, par le biais de la création d'un périmètre de transport unique, est-elle la solution la mieux à même de faciliter le report modal au bénéfice des modes collectifs dans l'agglomération multipolaire azuréenne ? L'inadaptation des réseaux aux mobilités actuelles engendre des problèmes aigus de gestion du transport public. Cette inadaptation repose sur l'inadéquation des structures institutionnelles qui ne sont pas à la bonne échelle. Les pôles multiples doivent être reliés à des réseaux urbains interdépendants et cette nécessité s'accompagne de l'invention de nouvelles formes de gouvernement. Le travail comporte un premier chapitre présentant le cadre théorique de la relation entre agglomération multipolaire, institutions et organisation du transport dans un contexte spatial dense. En effet, les AOTU étaient, au départ, distinctes, ce choix étant justifié par l'état de l'urbanisation lors de leur création, mais elles gèrent des territoires désormais jointifs. Or, on ne peut imposer un périmètre conforme à un bassin de vie, d'où des inadaptations flagrantes.Un deuxième chapitre étudie les actions des autorités organisatrices du transport public dans l'espace multipolaire azuréen : la complexité de l'organisation institutionnelle est-elle la proie d'un effet de frontière entre AO ? Le Département est en retrait face à la croissance des AOTU et notamment de Métropole Nice Côte d'Azur ; cela forme un espace politique inadapté au contexte géographique. Une nouvelle structure fédérative, le SYMITAM, est créée mais ne remplit pas son rôle de coordination ; devant seconder le Département, elle est mise de fait au service de l'AOTU la plus conquérante.Enfin, grâce à l'analyse des mobilités et notamment par la mesure des actifs stables et sortants de chaque commune, et par les axes de TCSP, de TER et les pôles d'échanges qu'il serait nécessaire d'implanter pour mieux organiser les interrelations entre le littoral et le sous-ensemble intérieur, un troisième chapitre propose une résorption de l'effet de frontière par l'élaboration de nouveaux périmètres institutionnels. Nous montrons les AO les plus à même d'organiser la gestion de ce nouveau format territorial afin de contrecarrer la parcellisation institutionnelle.
196

Croissance et coalescence de bulles dans les magmas : analyse mathématique et simulation numérique

Forestier-Coste, Louis 22 June 2012 (has links) (PDF)
Cette thèse est consacrée à l'étude mathématiques et numérique d'un problème physique issu de la volcanologie. On s'intéresse à la modélisation polydisperse de croissance de bulles par exsolution, décompression et coalescence. Un modèle de croissance polydisperse a été proposé dans la litérature, mais ne prenait en compte que le volume des bulles, ce qui restreint le domaine d'application car la croissance par exsolution dépend également de la masse d'eau présente dans la bulle. Pour améliorer ce modèle, nous sommes parti d'une description monodisperse adimensionnelle de la croissance d'une bulle par décompression et exsolution, donnée par le couplage de deux EDO et une EDP. Un code numérique est proposé pour résoudre le problème monodisperse et est actuellement utilisé. Après avoir validé numériquement ce code et considéré plusieurs cas limites, nous avons étudié les solutions du problème et défini une approximation du flux qui nous permet de découpler le système d'équations. Ensuite, nous avons étendu le modèle polydisperse de une à deux dimensions. Une résolution de la coalescence est proposée et couplée avec le modèle de croissance polydisperse. La résolution de la coalescence est confrontée à d'autres schémas numériques en une et deux dimensions afin de valider le schéma numérique proposé. Les premiers test numériques appliqués au problème physique donnent de bon résultats.
197

Application of the HLD and NAC Models to the Formation and Stability of Emulsions

Kiran, Sumit K. 10 January 2014 (has links)
This thesis explored how asphaltene and naphthenic amphiphile species influence the formation (morphology and size) and stability of heavy crude oil (bitumen) emulsions. It was experimentally shown that asphaltenes produce water-in-oil emulsions. Naphthenic amphiphiles on the other hand flip the emulsion morphology to oil-in-water. It was further demonstrated that the size and stability of these emulsions is influenced by physicochemical effects such as the pH, solvent-bitumen-water ratios, solvent aromaticity, and temperature. In view of these findings, the hydrophilic-lipophilic deviation (HLD) and net-average curvature (NAC) models were looked at as potential means for predicting the formation and stability of emulsions. Owing to the complexity of bitumen emulsions, however, the HLD and NAC models were instead tested against well-defined sodium dihexyl sulfosuccinate-toluene-water emulsions. The morphologies of these emulsions were predicted as a function of the formulation salinity whereas corresponding droplet sizes were predicted as a function of the continuous phase density and interfacial tension (γow). Emulsion stability trends were in turn predicted using a collision-coalescence-separation assumption. From this assumption, emulsion stability was expressed as a function of the emulsion droplet collision frequency and activation energy. The key parameters of the highly scrutinized activation energy term included the γow, interfacial rigidity, and critical film thickness. In applying the same modeling approach to the stability of other emulsions already published in the literature, it was found that the rigidity of adsorbed multilayer/liquid crystal films cannot yet be fully accounted for. This shortcoming was the reason for which only minimum stability times were reported for bitumen emulsions.
198

Aggregate coalescence and factors affecting it.

Hasanah, Uswah January 2007 (has links)
The phenomenon called soil aggregate coalescence occurs at contact-points between aggregates and causes soil strength to increase to values that can inhibit plant root exploration and thus potential yield. During natural wetting and drying, soil aggregates appear to ‘weld’ together with little or no increase in dry bulk density. The precise reasons for this phenomenon are not understood, but it has been found to occur even in soils comprised entirely of water stable aggregates. Soil aggregate coalescence has not been widely observed and reported in soil science and yet may pose a significant risk for crops preventing them from achieving their genetic and environmental yield potentials. This project used soil penetrometer resistance and an indirect tensile-strength test to measure the early stages of aggregate coalescence and to evaluate their effects on the early growth of tomato plants. The early stages of aggregate coalescence were thought to be affected by a number of factors including: the matric suction of water during application and subsequent drainage, the overburden pressure on moist soil in the root zone, the initial size of soil aggregates prior to wetting, and the degree of sodicity of the soil aggregates. Seven mainexperiments were conducted to evaluate these factors. The matric suction during wetting of a seedbed affects the degree of aggregate slaking that occurs, and the strength of the wetted aggregates. The matric suction during draining affects the magnitude of ‘effective stresses’ that operate to retain soil structural integrity as the soil drains and dries out. An experiment was conducted to evaluate the influence of matric suction (within a range of suctions experienced in the field) on aggregate coalescence using soils of two different textures. Sieved aggregates (0.5 to 2 mm diameter) from a coarse-textured and two fine-textured (swelling) soils were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and subjected to different suctions on wetting (near-saturation, and 1 kPa), and on draining (10 kPa on sintered-glass funnels, and 100 kPa on ceramic pressure plates). After one-week of drainage, penetrometer resistance was measured as a function of depth to approximately 45 mm (penetrometer had a recessedshaft, cone diameter = 2 mm, advanced at a rate of 0.3 mm/min). Tensile strength of other core-samples was measured after air-drying using an indirect “Brazilian” crushing test. For the coarse-textured soil, penetrometer resistance was significantly greater for samples wet to near-saturation, despite there being no significant increase in dry bulk density; this was not the case for the finer-textured soils, and it was difficult to distinguish the effects of variable bulk density upon drying from those of the imposed wetting treatments. In both coarse- and fine-textured soils, the tensile strength was significantly greater for samples wet to near-saturation. Thus wetting- and draining-suctions were both found to influence the degree of soil aggregate coalescence as measured by penetrometer resistance and tensile strength. Aggregate coalescence in irrigated crops is known to develop as the growing season progresses. It was therefore thought to be linked to the repeated occurrence of matric suctions that enhance the phenomenon during cycles of wetting and draining. An experiment was conducted to determine the extent of aggregate coalescence in a coarsetextured and two fine-textured (swelling clay) soils during 8 successive cycles of wetting and draining. Sieved aggregates (0.5 to 2 mm diameter) from each soil were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and wetted to near saturation for 24 h. They were then drained on ceramic pressure plates to a suction of 100 kPa for one week, after which penetrometer resistance and tensile strength were measured as described above. The degree of expression of aggregate coalescence depended on soil type. For the coarse-textured soil, repeated wetting and draining significantly increased bulk density, penetrometer resistance and tensile strength. For the fine-textured soil, penetrometer resistance and bulk density did not vary significantly with repeated wetting and draining; on the contrary, there was evidence in these swelling clay soils to suggest bulk density and penetrometer resistance decreased. However, there was a progressive increase in tensile strength as cycles of wetting and draining progressed. The expansive nature of the fine-textured soil appears to have masked the development of aggregate coalescence as measured by penetrometer resistance, but its expression was very clear in measurements of tensile strength despite the reduction in bulk density with successive wetting and draining. Field observations have indicated that aggregate coalescence is first expressed at the bottom of the seedbed and that it develops progressively upward to the soil surface during the growing season. This suggests that overburden pressures may enhance the onset of the phenomenon by increasing the degree of inter-aggregate contact. Soils containing large quantities of particulate organic matter were known to resist the onset of aggregate coalescence to some extent. An experiment was conducted to evaluate the effects of soil organic matter and overburden pressures, by placing brass cylinders of various weights (equivalent to static load pressures of 0, 0.49, 1.47 and 2.47 kPa) on the top of dry soil aggregates (0.5 – 2 mm diameter) having widely different soil organic carbon contents placed in steel rings 5 cm high and 5 cm i.d. With the weights in place, the aggregates were wetted to near-saturation for 24 h and then drained on ceramic pressure plates to a suction of 100 kPa for one week. Bulk density, penetrometer resistance and tensile strength were measured when the samples were removed from the pressure plates and they all increased significantly with increasing overburden pressure in the soil with low organic matter content, but not in the soil with high organic matter content. The amount of tillage used to prepare seedbeds influences the size distribution of soil aggregates produced – that is, more tillage produces finer seedbeds. The size distribution of soil aggregates affects the number of inter-aggregate contact points and this was thought to influence the degree of aggregate coalescence that develops in a seedbed. Previous work has shown that soil organic matter reduces aggregate coalescence and so an experiment was conducted to evaluate the effects of aggregate size and organic matter on the phenomenon. For soils with high and low organic matter contents, aggregate size fractions of < 0.5, 0.5 – 2, 2 – 4, and < 4 mm were packed into soil cores (as above) and wetted to near-saturation then drained to 100 kPa suction as described above. Penetrometer resistance and tensile strength were measured and found to increase directly with the amount of fine material present in the soil cores – being greater in the < 0.5 mm and < 4 mm fractions, and being less in the 0.5 – 2 mm and 2 – 4 mm fractions. In all cases, penetrometer resistance and tensile strength were lower in the samples containing more organic matter. The rate at which soil aggregates are wetted in a seedbed affects the degree of slaking and densification that occurs, and the extent to which aggregates are wetted influences the overall strength of a seedbed. Both wetting rate and the extent of wetting were believed to influence the onset of aggregate coalescence and were thought to be affected by soil organic matter and irrigation technique. An experiment was therefore designed to separate these effects so that improvements to management could be evaluated for their greatest efficacy – that is, to determine whether management should focus on improving irrigation technique or increasing soil organic matter content, or both. The rate of wetting was controlled by spraying (or not spraying) soil aggregates (0.5 – 2 mm diameter) with polyvinyl alcohol (PVA). Samples of coarse- and fine-textured soils were packed into steel rings (as above) and subjected to different application rates of water (1, 10 and 100 mm/h) using a dripper system controlled by a peristaltic pump. Samples were brought to either a near-saturated state or to a suction of 10 kPa for 24 h, and then drained on a pressure plate at a suction of 100 kPa for one week. Measurements of penetrometer resistance and tensile strength were then made as described above. As expected, penetrometer resistance was lower in samples treated with PVA before wetting (slower wetting rates) and in samples held at a greater suction (10 kPa) after initial wetting (greater inter-aggregate strength). The effects were more pronounced in the coarse-textured soil. In both coarse- and fine-textured soils, tensile strengths increased with increasing wetting rate (greatest for 100 mm/h) and extent of wetting (greater when held at near-saturated conditions). The rate of wetting was found to be somewhat more important for promoting aggregate coalescence than the extent of wetting. Because aggregate coalescence often occurs with little or no increase in bulk density, an explanation for the increase in penetrometer resistance and tensile strength is unlikely to be explained by a large increase in the number of inter-aggregate contacts. An increase in the strength of existing points of inter-aggregate contact was therefore considered in this work. For inter-aggregate bond strengths to increase, it was hypothesized that small increases in the amount of mechanically (or spontaneously) dispersed clay particles, and subsequent deposition at inter-aggregate contact points could increase aggregate coalescence as measured by penetrometer resistance and tensile strength. An experiment was devised to manipulate the amount of spontaneously dispersed clay in coarse- and fine-textured soils of high and low organic matter content. The degree of sodicity of each soil was manipulated by varying the exchangeable sodium percentage (ESP) of soil aggregates (0.5 – 2mm) above and below a nominal threshold value of 6. Dry aggregates were then packed into steel rings (as above) and subjected to wetting near saturation, then draining to a suction of 100 kPa for one week as described above. Measurements were then taken of penetrometer resistance and tensile strength, both of which were affected by ESP in different ways. In the coarse-textured soil, sodicity enhanced aggregate slaking and dispersion, which increased bulk density. While penetrometer resistance also increased, its effect on aggregate coalescence could not be separated from a simple effect of increased bulk density. Similarly, the effect of sodicity on aggregate coalescence in the fine-textured soil was confounded by the higher water contents produced by greater swelling, which produced lower-than-expected penetrometer resistance. Measurements of tensile strength were conducted on air-dry samples, and so the confounding effects of bulk density and water content were eliminated and it was found that tensile strength increased with sodicity in both coarse- and fine-textured soils. The presence of dispersed clay was therefore implicated in the development of aggregate coalescence in this work. Finally, a preliminary evaluation of how the early stages of aggregate coalescence might affect plant growth was attempted using tomatoes (Gross lisse) as a test plant. Seeds were planted in aggregates (0.5 – 4 mm) of a coarse- or fine-textured soil packed in steel rings. These were wetted at a rate of 1 mm/h to either near-saturation (for maximum coalescence) or to a suction of 10 kPa (for minimum coalescence) and held under these conditions for 24 h. All samples were then transferred to a ceramic pressure plate for drainage to 100 kPa suction for one week. Samples were then placed in a growth-cabinet held at 20C with controlled exposure to 14 h light/day. Germination of the seeds, plant height, and number and length of roots were observed. Germination of the seeds held at near-saturation in both coarse- and fine-textured soils was delayed by 24 h compared with seeds held at 10 kPa suction. Neither the number nor the length of tomato roots differed significantly between the different treatments and soils. In the coarse-textured soil, however, the total root length over a period of 14 days was somewhat greater in the uncoalesced samples than in the coalesced samples, but this difference was not statistically significant. These results suggest that aside from delaying germination, aggregate coalescence may not have a large effect on early growth of tomato plants. However, this is not to say that detrimental effects may not be manifest at later stages of plant growth, and this certainly needs to be evaluated, particularly because aggregate coalescence increase with repeated cycles of wetting and draining. In conclusion, the primary findings of the work undertaken in this thesis were: • Rapid wetting of soil aggregates to near-saturation enhanced the onset of soil aggregate coalescence as measured by (in some cases) penetrometer resistance at a soil water suction of 100 kPa, and (in most cases) tensile strength of soil cores in the air-dry state. The rate of wetting appeared to be more important in bringing on aggregate coalescence than how wet the soil eventually became during wetting. This means reducing the rate at which irrigation water is applied to soils may reduce the onset of aggregate coalescence more effectively than controlling the total amount of water applied – though both are important. The literature reports that aggregate coalescence occurs in the field over periods of up to several months, involving multiple wetting and draining cycles, but the work here demonstrated that this can occur over much shorter time periods depending on conditions imposed. • Aggregate coalescence occurred in coarse-textured soils regardless of whether the bulk density increased during wetting and draining. In finer-textured soils, the response to wetting conditions varied and was complicated by changes in bulk density and water content due to swelling. • Small overburden pressures enhanced the onset of aggregate coalescence, but these effects were diminished in the presence of high soil organic matter contents. • Finer aggregate size distributions (which are often produced in the field by excessive tillage during seedbed preparation) invariably led to greater aggregate coalescence than coarser aggregate size distributions. The effects of aggregate size were mitigated to some extent by higher contents of soil organic matter. • Sodicity enhanced aggregate coalescence as measured by tensile strength, but when penetrometer resistance was measured in the moist state, the effects were masked to some extent by higher water contents generated by swelling and dispersion. This work suggests that tensile strength (in the air dry state) may be a more effective measure of aggregate coalescence than penetrometer resistance. • Early plant response to aggregate coalescence was not large, but the response may become magnified during later stages of growth. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297583 / Thesis (Ph.D.) -- School of Earth and Environmental Sciences, 2007
199

Aggregate coalescence and factors affecting it.

Hasanah, Uswah January 2007 (has links)
The phenomenon called soil aggregate coalescence occurs at contact-points between aggregates and causes soil strength to increase to values that can inhibit plant root exploration and thus potential yield. During natural wetting and drying, soil aggregates appear to ‘weld’ together with little or no increase in dry bulk density. The precise reasons for this phenomenon are not understood, but it has been found to occur even in soils comprised entirely of water stable aggregates. Soil aggregate coalescence has not been widely observed and reported in soil science and yet may pose a significant risk for crops preventing them from achieving their genetic and environmental yield potentials. This project used soil penetrometer resistance and an indirect tensile-strength test to measure the early stages of aggregate coalescence and to evaluate their effects on the early growth of tomato plants. The early stages of aggregate coalescence were thought to be affected by a number of factors including: the matric suction of water during application and subsequent drainage, the overburden pressure on moist soil in the root zone, the initial size of soil aggregates prior to wetting, and the degree of sodicity of the soil aggregates. Seven mainexperiments were conducted to evaluate these factors. The matric suction during wetting of a seedbed affects the degree of aggregate slaking that occurs, and the strength of the wetted aggregates. The matric suction during draining affects the magnitude of ‘effective stresses’ that operate to retain soil structural integrity as the soil drains and dries out. An experiment was conducted to evaluate the influence of matric suction (within a range of suctions experienced in the field) on aggregate coalescence using soils of two different textures. Sieved aggregates (0.5 to 2 mm diameter) from a coarse-textured and two fine-textured (swelling) soils were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and subjected to different suctions on wetting (near-saturation, and 1 kPa), and on draining (10 kPa on sintered-glass funnels, and 100 kPa on ceramic pressure plates). After one-week of drainage, penetrometer resistance was measured as a function of depth to approximately 45 mm (penetrometer had a recessedshaft, cone diameter = 2 mm, advanced at a rate of 0.3 mm/min). Tensile strength of other core-samples was measured after air-drying using an indirect “Brazilian” crushing test. For the coarse-textured soil, penetrometer resistance was significantly greater for samples wet to near-saturation, despite there being no significant increase in dry bulk density; this was not the case for the finer-textured soils, and it was difficult to distinguish the effects of variable bulk density upon drying from those of the imposed wetting treatments. In both coarse- and fine-textured soils, the tensile strength was significantly greater for samples wet to near-saturation. Thus wetting- and draining-suctions were both found to influence the degree of soil aggregate coalescence as measured by penetrometer resistance and tensile strength. Aggregate coalescence in irrigated crops is known to develop as the growing season progresses. It was therefore thought to be linked to the repeated occurrence of matric suctions that enhance the phenomenon during cycles of wetting and draining. An experiment was conducted to determine the extent of aggregate coalescence in a coarsetextured and two fine-textured (swelling clay) soils during 8 successive cycles of wetting and draining. Sieved aggregates (0.5 to 2 mm diameter) from each soil were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and wetted to near saturation for 24 h. They were then drained on ceramic pressure plates to a suction of 100 kPa for one week, after which penetrometer resistance and tensile strength were measured as described above. The degree of expression of aggregate coalescence depended on soil type. For the coarse-textured soil, repeated wetting and draining significantly increased bulk density, penetrometer resistance and tensile strength. For the fine-textured soil, penetrometer resistance and bulk density did not vary significantly with repeated wetting and draining; on the contrary, there was evidence in these swelling clay soils to suggest bulk density and penetrometer resistance decreased. However, there was a progressive increase in tensile strength as cycles of wetting and draining progressed. The expansive nature of the fine-textured soil appears to have masked the development of aggregate coalescence as measured by penetrometer resistance, but its expression was very clear in measurements of tensile strength despite the reduction in bulk density with successive wetting and draining. Field observations have indicated that aggregate coalescence is first expressed at the bottom of the seedbed and that it develops progressively upward to the soil surface during the growing season. This suggests that overburden pressures may enhance the onset of the phenomenon by increasing the degree of inter-aggregate contact. Soils containing large quantities of particulate organic matter were known to resist the onset of aggregate coalescence to some extent. An experiment was conducted to evaluate the effects of soil organic matter and overburden pressures, by placing brass cylinders of various weights (equivalent to static load pressures of 0, 0.49, 1.47 and 2.47 kPa) on the top of dry soil aggregates (0.5 – 2 mm diameter) having widely different soil organic carbon contents placed in steel rings 5 cm high and 5 cm i.d. With the weights in place, the aggregates were wetted to near-saturation for 24 h and then drained on ceramic pressure plates to a suction of 100 kPa for one week. Bulk density, penetrometer resistance and tensile strength were measured when the samples were removed from the pressure plates and they all increased significantly with increasing overburden pressure in the soil with low organic matter content, but not in the soil with high organic matter content. The amount of tillage used to prepare seedbeds influences the size distribution of soil aggregates produced – that is, more tillage produces finer seedbeds. The size distribution of soil aggregates affects the number of inter-aggregate contact points and this was thought to influence the degree of aggregate coalescence that develops in a seedbed. Previous work has shown that soil organic matter reduces aggregate coalescence and so an experiment was conducted to evaluate the effects of aggregate size and organic matter on the phenomenon. For soils with high and low organic matter contents, aggregate size fractions of < 0.5, 0.5 – 2, 2 – 4, and < 4 mm were packed into soil cores (as above) and wetted to near-saturation then drained to 100 kPa suction as described above. Penetrometer resistance and tensile strength were measured and found to increase directly with the amount of fine material present in the soil cores – being greater in the < 0.5 mm and < 4 mm fractions, and being less in the 0.5 – 2 mm and 2 – 4 mm fractions. In all cases, penetrometer resistance and tensile strength were lower in the samples containing more organic matter. The rate at which soil aggregates are wetted in a seedbed affects the degree of slaking and densification that occurs, and the extent to which aggregates are wetted influences the overall strength of a seedbed. Both wetting rate and the extent of wetting were believed to influence the onset of aggregate coalescence and were thought to be affected by soil organic matter and irrigation technique. An experiment was therefore designed to separate these effects so that improvements to management could be evaluated for their greatest efficacy – that is, to determine whether management should focus on improving irrigation technique or increasing soil organic matter content, or both. The rate of wetting was controlled by spraying (or not spraying) soil aggregates (0.5 – 2 mm diameter) with polyvinyl alcohol (PVA). Samples of coarse- and fine-textured soils were packed into steel rings (as above) and subjected to different application rates of water (1, 10 and 100 mm/h) using a dripper system controlled by a peristaltic pump. Samples were brought to either a near-saturated state or to a suction of 10 kPa for 24 h, and then drained on a pressure plate at a suction of 100 kPa for one week. Measurements of penetrometer resistance and tensile strength were then made as described above. As expected, penetrometer resistance was lower in samples treated with PVA before wetting (slower wetting rates) and in samples held at a greater suction (10 kPa) after initial wetting (greater inter-aggregate strength). The effects were more pronounced in the coarse-textured soil. In both coarse- and fine-textured soils, tensile strengths increased with increasing wetting rate (greatest for 100 mm/h) and extent of wetting (greater when held at near-saturated conditions). The rate of wetting was found to be somewhat more important for promoting aggregate coalescence than the extent of wetting. Because aggregate coalescence often occurs with little or no increase in bulk density, an explanation for the increase in penetrometer resistance and tensile strength is unlikely to be explained by a large increase in the number of inter-aggregate contacts. An increase in the strength of existing points of inter-aggregate contact was therefore considered in this work. For inter-aggregate bond strengths to increase, it was hypothesized that small increases in the amount of mechanically (or spontaneously) dispersed clay particles, and subsequent deposition at inter-aggregate contact points could increase aggregate coalescence as measured by penetrometer resistance and tensile strength. An experiment was devised to manipulate the amount of spontaneously dispersed clay in coarse- and fine-textured soils of high and low organic matter content. The degree of sodicity of each soil was manipulated by varying the exchangeable sodium percentage (ESP) of soil aggregates (0.5 – 2mm) above and below a nominal threshold value of 6. Dry aggregates were then packed into steel rings (as above) and subjected to wetting near saturation, then draining to a suction of 100 kPa for one week as described above. Measurements were then taken of penetrometer resistance and tensile strength, both of which were affected by ESP in different ways. In the coarse-textured soil, sodicity enhanced aggregate slaking and dispersion, which increased bulk density. While penetrometer resistance also increased, its effect on aggregate coalescence could not be separated from a simple effect of increased bulk density. Similarly, the effect of sodicity on aggregate coalescence in the fine-textured soil was confounded by the higher water contents produced by greater swelling, which produced lower-than-expected penetrometer resistance. Measurements of tensile strength were conducted on air-dry samples, and so the confounding effects of bulk density and water content were eliminated and it was found that tensile strength increased with sodicity in both coarse- and fine-textured soils. The presence of dispersed clay was therefore implicated in the development of aggregate coalescence in this work. Finally, a preliminary evaluation of how the early stages of aggregate coalescence might affect plant growth was attempted using tomatoes (Gross lisse) as a test plant. Seeds were planted in aggregates (0.5 – 4 mm) of a coarse- or fine-textured soil packed in steel rings. These were wetted at a rate of 1 mm/h to either near-saturation (for maximum coalescence) or to a suction of 10 kPa (for minimum coalescence) and held under these conditions for 24 h. All samples were then transferred to a ceramic pressure plate for drainage to 100 kPa suction for one week. Samples were then placed in a growth-cabinet held at 20C with controlled exposure to 14 h light/day. Germination of the seeds, plant height, and number and length of roots were observed. Germination of the seeds held at near-saturation in both coarse- and fine-textured soils was delayed by 24 h compared with seeds held at 10 kPa suction. Neither the number nor the length of tomato roots differed significantly between the different treatments and soils. In the coarse-textured soil, however, the total root length over a period of 14 days was somewhat greater in the uncoalesced samples than in the coalesced samples, but this difference was not statistically significant. These results suggest that aside from delaying germination, aggregate coalescence may not have a large effect on early growth of tomato plants. However, this is not to say that detrimental effects may not be manifest at later stages of plant growth, and this certainly needs to be evaluated, particularly because aggregate coalescence increase with repeated cycles of wetting and draining. In conclusion, the primary findings of the work undertaken in this thesis were: • Rapid wetting of soil aggregates to near-saturation enhanced the onset of soil aggregate coalescence as measured by (in some cases) penetrometer resistance at a soil water suction of 100 kPa, and (in most cases) tensile strength of soil cores in the air-dry state. The rate of wetting appeared to be more important in bringing on aggregate coalescence than how wet the soil eventually became during wetting. This means reducing the rate at which irrigation water is applied to soils may reduce the onset of aggregate coalescence more effectively than controlling the total amount of water applied – though both are important. The literature reports that aggregate coalescence occurs in the field over periods of up to several months, involving multiple wetting and draining cycles, but the work here demonstrated that this can occur over much shorter time periods depending on conditions imposed. • Aggregate coalescence occurred in coarse-textured soils regardless of whether the bulk density increased during wetting and draining. In finer-textured soils, the response to wetting conditions varied and was complicated by changes in bulk density and water content due to swelling. • Small overburden pressures enhanced the onset of aggregate coalescence, but these effects were diminished in the presence of high soil organic matter contents. • Finer aggregate size distributions (which are often produced in the field by excessive tillage during seedbed preparation) invariably led to greater aggregate coalescence than coarser aggregate size distributions. The effects of aggregate size were mitigated to some extent by higher contents of soil organic matter. • Sodicity enhanced aggregate coalescence as measured by tensile strength, but when penetrometer resistance was measured in the moist state, the effects were masked to some extent by higher water contents generated by swelling and dispersion. This work suggests that tensile strength (in the air dry state) may be a more effective measure of aggregate coalescence than penetrometer resistance. • Early plant response to aggregate coalescence was not large, but the response may become magnified during later stages of growth. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297583 / Thesis (Ph.D.) -- School of Earth and Environmental Sciences, 2007
200

Aggregate coalescence and factors affecting it.

Hasanah, Uswah January 2007 (has links)
The phenomenon called soil aggregate coalescence occurs at contact-points between aggregates and causes soil strength to increase to values that can inhibit plant root exploration and thus potential yield. During natural wetting and drying, soil aggregates appear to ‘weld’ together with little or no increase in dry bulk density. The precise reasons for this phenomenon are not understood, but it has been found to occur even in soils comprised entirely of water stable aggregates. Soil aggregate coalescence has not been widely observed and reported in soil science and yet may pose a significant risk for crops preventing them from achieving their genetic and environmental yield potentials. This project used soil penetrometer resistance and an indirect tensile-strength test to measure the early stages of aggregate coalescence and to evaluate their effects on the early growth of tomato plants. The early stages of aggregate coalescence were thought to be affected by a number of factors including: the matric suction of water during application and subsequent drainage, the overburden pressure on moist soil in the root zone, the initial size of soil aggregates prior to wetting, and the degree of sodicity of the soil aggregates. Seven mainexperiments were conducted to evaluate these factors. The matric suction during wetting of a seedbed affects the degree of aggregate slaking that occurs, and the strength of the wetted aggregates. The matric suction during draining affects the magnitude of ‘effective stresses’ that operate to retain soil structural integrity as the soil drains and dries out. An experiment was conducted to evaluate the influence of matric suction (within a range of suctions experienced in the field) on aggregate coalescence using soils of two different textures. Sieved aggregates (0.5 to 2 mm diameter) from a coarse-textured and two fine-textured (swelling) soils were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and subjected to different suctions on wetting (near-saturation, and 1 kPa), and on draining (10 kPa on sintered-glass funnels, and 100 kPa on ceramic pressure plates). After one-week of drainage, penetrometer resistance was measured as a function of depth to approximately 45 mm (penetrometer had a recessedshaft, cone diameter = 2 mm, advanced at a rate of 0.3 mm/min). Tensile strength of other core-samples was measured after air-drying using an indirect “Brazilian” crushing test. For the coarse-textured soil, penetrometer resistance was significantly greater for samples wet to near-saturation, despite there being no significant increase in dry bulk density; this was not the case for the finer-textured soils, and it was difficult to distinguish the effects of variable bulk density upon drying from those of the imposed wetting treatments. In both coarse- and fine-textured soils, the tensile strength was significantly greater for samples wet to near-saturation. Thus wetting- and draining-suctions were both found to influence the degree of soil aggregate coalescence as measured by penetrometer resistance and tensile strength. Aggregate coalescence in irrigated crops is known to develop as the growing season progresses. It was therefore thought to be linked to the repeated occurrence of matric suctions that enhance the phenomenon during cycles of wetting and draining. An experiment was conducted to determine the extent of aggregate coalescence in a coarsetextured and two fine-textured (swelling clay) soils during 8 successive cycles of wetting and draining. Sieved aggregates (0.5 to 2 mm diameter) from each soil were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and wetted to near saturation for 24 h. They were then drained on ceramic pressure plates to a suction of 100 kPa for one week, after which penetrometer resistance and tensile strength were measured as described above. The degree of expression of aggregate coalescence depended on soil type. For the coarse-textured soil, repeated wetting and draining significantly increased bulk density, penetrometer resistance and tensile strength. For the fine-textured soil, penetrometer resistance and bulk density did not vary significantly with repeated wetting and draining; on the contrary, there was evidence in these swelling clay soils to suggest bulk density and penetrometer resistance decreased. However, there was a progressive increase in tensile strength as cycles of wetting and draining progressed. The expansive nature of the fine-textured soil appears to have masked the development of aggregate coalescence as measured by penetrometer resistance, but its expression was very clear in measurements of tensile strength despite the reduction in bulk density with successive wetting and draining. Field observations have indicated that aggregate coalescence is first expressed at the bottom of the seedbed and that it develops progressively upward to the soil surface during the growing season. This suggests that overburden pressures may enhance the onset of the phenomenon by increasing the degree of inter-aggregate contact. Soils containing large quantities of particulate organic matter were known to resist the onset of aggregate coalescence to some extent. An experiment was conducted to evaluate the effects of soil organic matter and overburden pressures, by placing brass cylinders of various weights (equivalent to static load pressures of 0, 0.49, 1.47 and 2.47 kPa) on the top of dry soil aggregates (0.5 – 2 mm diameter) having widely different soil organic carbon contents placed in steel rings 5 cm high and 5 cm i.d. With the weights in place, the aggregates were wetted to near-saturation for 24 h and then drained on ceramic pressure plates to a suction of 100 kPa for one week. Bulk density, penetrometer resistance and tensile strength were measured when the samples were removed from the pressure plates and they all increased significantly with increasing overburden pressure in the soil with low organic matter content, but not in the soil with high organic matter content. The amount of tillage used to prepare seedbeds influences the size distribution of soil aggregates produced – that is, more tillage produces finer seedbeds. The size distribution of soil aggregates affects the number of inter-aggregate contact points and this was thought to influence the degree of aggregate coalescence that develops in a seedbed. Previous work has shown that soil organic matter reduces aggregate coalescence and so an experiment was conducted to evaluate the effects of aggregate size and organic matter on the phenomenon. For soils with high and low organic matter contents, aggregate size fractions of < 0.5, 0.5 – 2, 2 – 4, and < 4 mm were packed into soil cores (as above) and wetted to near-saturation then drained to 100 kPa suction as described above. Penetrometer resistance and tensile strength were measured and found to increase directly with the amount of fine material present in the soil cores – being greater in the < 0.5 mm and < 4 mm fractions, and being less in the 0.5 – 2 mm and 2 – 4 mm fractions. In all cases, penetrometer resistance and tensile strength were lower in the samples containing more organic matter. The rate at which soil aggregates are wetted in a seedbed affects the degree of slaking and densification that occurs, and the extent to which aggregates are wetted influences the overall strength of a seedbed. Both wetting rate and the extent of wetting were believed to influence the onset of aggregate coalescence and were thought to be affected by soil organic matter and irrigation technique. An experiment was therefore designed to separate these effects so that improvements to management could be evaluated for their greatest efficacy – that is, to determine whether management should focus on improving irrigation technique or increasing soil organic matter content, or both. The rate of wetting was controlled by spraying (or not spraying) soil aggregates (0.5 – 2 mm diameter) with polyvinyl alcohol (PVA). Samples of coarse- and fine-textured soils were packed into steel rings (as above) and subjected to different application rates of water (1, 10 and 100 mm/h) using a dripper system controlled by a peristaltic pump. Samples were brought to either a near-saturated state or to a suction of 10 kPa for 24 h, and then drained on a pressure plate at a suction of 100 kPa for one week. Measurements of penetrometer resistance and tensile strength were then made as described above. As expected, penetrometer resistance was lower in samples treated with PVA before wetting (slower wetting rates) and in samples held at a greater suction (10 kPa) after initial wetting (greater inter-aggregate strength). The effects were more pronounced in the coarse-textured soil. In both coarse- and fine-textured soils, tensile strengths increased with increasing wetting rate (greatest for 100 mm/h) and extent of wetting (greater when held at near-saturated conditions). The rate of wetting was found to be somewhat more important for promoting aggregate coalescence than the extent of wetting. Because aggregate coalescence often occurs with little or no increase in bulk density, an explanation for the increase in penetrometer resistance and tensile strength is unlikely to be explained by a large increase in the number of inter-aggregate contacts. An increase in the strength of existing points of inter-aggregate contact was therefore considered in this work. For inter-aggregate bond strengths to increase, it was hypothesized that small increases in the amount of mechanically (or spontaneously) dispersed clay particles, and subsequent deposition at inter-aggregate contact points could increase aggregate coalescence as measured by penetrometer resistance and tensile strength. An experiment was devised to manipulate the amount of spontaneously dispersed clay in coarse- and fine-textured soils of high and low organic matter content. The degree of sodicity of each soil was manipulated by varying the exchangeable sodium percentage (ESP) of soil aggregates (0.5 – 2mm) above and below a nominal threshold value of 6. Dry aggregates were then packed into steel rings (as above) and subjected to wetting near saturation, then draining to a suction of 100 kPa for one week as described above. Measurements were then taken of penetrometer resistance and tensile strength, both of which were affected by ESP in different ways. In the coarse-textured soil, sodicity enhanced aggregate slaking and dispersion, which increased bulk density. While penetrometer resistance also increased, its effect on aggregate coalescence could not be separated from a simple effect of increased bulk density. Similarly, the effect of sodicity on aggregate coalescence in the fine-textured soil was confounded by the higher water contents produced by greater swelling, which produced lower-than-expected penetrometer resistance. Measurements of tensile strength were conducted on air-dry samples, and so the confounding effects of bulk density and water content were eliminated and it was found that tensile strength increased with sodicity in both coarse- and fine-textured soils. The presence of dispersed clay was therefore implicated in the development of aggregate coalescence in this work. Finally, a preliminary evaluation of how the early stages of aggregate coalescence might affect plant growth was attempted using tomatoes (Gross lisse) as a test plant. Seeds were planted in aggregates (0.5 – 4 mm) of a coarse- or fine-textured soil packed in steel rings. These were wetted at a rate of 1 mm/h to either near-saturation (for maximum coalescence) or to a suction of 10 kPa (for minimum coalescence) and held under these conditions for 24 h. All samples were then transferred to a ceramic pressure plate for drainage to 100 kPa suction for one week. Samples were then placed in a growth-cabinet held at 20C with controlled exposure to 14 h light/day. Germination of the seeds, plant height, and number and length of roots were observed. Germination of the seeds held at near-saturation in both coarse- and fine-textured soils was delayed by 24 h compared with seeds held at 10 kPa suction. Neither the number nor the length of tomato roots differed significantly between the different treatments and soils. In the coarse-textured soil, however, the total root length over a period of 14 days was somewhat greater in the uncoalesced samples than in the coalesced samples, but this difference was not statistically significant. These results suggest that aside from delaying germination, aggregate coalescence may not have a large effect on early growth of tomato plants. However, this is not to say that detrimental effects may not be manifest at later stages of plant growth, and this certainly needs to be evaluated, particularly because aggregate coalescence increase with repeated cycles of wetting and draining. In conclusion, the primary findings of the work undertaken in this thesis were: • Rapid wetting of soil aggregates to near-saturation enhanced the onset of soil aggregate coalescence as measured by (in some cases) penetrometer resistance at a soil water suction of 100 kPa, and (in most cases) tensile strength of soil cores in the air-dry state. The rate of wetting appeared to be more important in bringing on aggregate coalescence than how wet the soil eventually became during wetting. This means reducing the rate at which irrigation water is applied to soils may reduce the onset of aggregate coalescence more effectively than controlling the total amount of water applied – though both are important. The literature reports that aggregate coalescence occurs in the field over periods of up to several months, involving multiple wetting and draining cycles, but the work here demonstrated that this can occur over much shorter time periods depending on conditions imposed. • Aggregate coalescence occurred in coarse-textured soils regardless of whether the bulk density increased during wetting and draining. In finer-textured soils, the response to wetting conditions varied and was complicated by changes in bulk density and water content due to swelling. • Small overburden pressures enhanced the onset of aggregate coalescence, but these effects were diminished in the presence of high soil organic matter contents. • Finer aggregate size distributions (which are often produced in the field by excessive tillage during seedbed preparation) invariably led to greater aggregate coalescence than coarser aggregate size distributions. The effects of aggregate size were mitigated to some extent by higher contents of soil organic matter. • Sodicity enhanced aggregate coalescence as measured by tensile strength, but when penetrometer resistance was measured in the moist state, the effects were masked to some extent by higher water contents generated by swelling and dispersion. This work suggests that tensile strength (in the air dry state) may be a more effective measure of aggregate coalescence than penetrometer resistance. • Early plant response to aggregate coalescence was not large, but the response may become magnified during later stages of growth. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297583 / Thesis (Ph.D.) -- School of Earth and Environmental Sciences, 2007

Page generated in 0.0615 seconds