• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 440
  • 318
  • 255
  • 63
  • 35
  • 22
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 5
  • 4
  • 2
  • Tagged with
  • 1404
  • 279
  • 211
  • 201
  • 183
  • 166
  • 148
  • 133
  • 127
  • 124
  • 108
  • 105
  • 101
  • 99
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Evaluation Of Performance Based Displacement Limits For Reinforced Concrete Columns Under Flexure

Solmaz, Taylan 01 September 2010 (has links) (PDF)
Reinforced concrete frame buildings are the most common type of constructions in Turkey which are exposed to various types of forces during their lifetime. Seismic performance of reinforced concrete frame buildings is dominated by columns which can be classified as primary members of these structures. When current codes are considered, all of them contain several provisions in order to implement reliable seismic performances of reinforced concrete columns. In order to evaluate the accuracy of these provisions, analytical and parametric studies are carried out for flexure critical reinforced concrete columns. In these studies, total numbers of 30 flexure critical columns are extracted from PEER database (2005) and analytically investigated. Once the seismic responses obtained from analytical investigations are close enough to experimental seismic responses, performance based displacement limits are pointed out according to TEC (2007), FEMA 356 (2000), Eurocode 8 (2003), and ASCE/SEI 41 Update (2009). In addition to this, total numbers of 144 flexure critical columns are generated in parametric studies to present the effects of various parameters such as column geometry, concrete strength, axial load ratio, transverse reinforcement ratio, and yielding strength of longitudinal reinforcement on performance based displacement limits. Performance based displacement limits proposed by TEC (2007), FEMA 356 (2000), Eurocode 8 (2003), and ASCE/SEI 41 Update (2009) are found very conservative compared to limits obtained from both experimental and analytical behavior. On the other hand, performance based displacement limits given in Eurocode 8 (2003) and ASCE/SEI 41 Update (2009) predict the experimental behavior more accurate than TEC (2007) and FEMA 356 (2000). Improvements on these limits are proposed.
292

Ammonium And Lead Exchange In Clinoptilolite Zeolite Column

Bahaalddin, Ahmad Dh. 01 January 2011 (has links) (PDF)
Wastewaters resulted from anthropogenic influence can encompass a wide range of potential contaminants and concentrations. There are numerous procedures that can be used to clear out wastewaters depending on the type and extent of contamination, however / disposal of pollutants from wastewaters in industrial scale is a difficult and costly problem. In this study, the use of ion exchange theory utilizing natural Turkish clinoptilolite zeolite from G&ouml / rdes-Manisa as ion exchange resins in down-flow column mode is investigated. The clinoptilolite with particle size range of 0.25-0.50 mm is used in the removal of lead Pb2+ and ammonium NH4+ ions from aqueous solutions. The aim of the study is to set up the conditions under which clinoptilolite may be used in an economical and efficient approach in the removal process. Experiments were divided into two sets: binary studies, and ternary studies, and the effects of conditioning clinoptilolite with NaCl solution, flow rate, and initial concentration of the solutions on the removal behavior were investigated. In binary studies, results showed that increasing the loading volumetric flow rate resulted in decreasing the breakthrough capacity and the column efficiency, while the total capacity remained constant. The maximum total capacity was determined as 1.16 meq/g of zeolite for NH4+, and 1.1 meq/g of zeolite for Pb2+ and these values were close to each other and to the sodium content of Na-form of pretreated clinoptilolite (1.16 meq/g of zeolite). In addition, by decreasing the initial contaminant concentration, an increase in breakthrough capacity and column efficiency was observed. In ternary studies, the results showed that the removal of Pb2+ and NH4+ ions are dependent on the flow rate, in which at moderately low flow rate, a higher ion exchange capacity is yielded. That was explained as at higher flow rates, the retention time was insufficient for the ion exchange process to take place completely between clinoptilolite and lead and ammonium ions. Thus, a competition between Pb2+ and NH4+ ions for the exchange sites on clinoptilolite was observed and this competition was in favor of lead ions. Consequently, it was observed that the clinoptilolite zeolite has affinity for both Pb2+ and NH4+ ions. However, the affinity of clinoptilolite for lead ions is higher than that for ammonium ions. Therefore, the cations selectivity for clinoptilolite according to their affinity is determined as the following sequence: NH4+ &gt / Pb2+ &gt / Na+.
293

Integer programming based search

Hewitt, Michael R. 21 August 2009 (has links)
When integer programming (IP) models are used in operational situations there is a need to consider the tradeoff between the conflicting goals of solution quality and solution time, since for many problems solving realistic-size instances to a tight tolerance is still beyond the capability of state-of-the-art solvers. However, by appropriately defining small instances, good primal solutions frequently can be found quickly. We explore this approach in this thesis by studying the design of algorithms that produce solutions to an integer program by solving restrictions of the problem via integer programming technology. We refer to this type of algorithm as IP-based search and present algorithms for network design problems of both real-world and academic interest. Along with algorithms that exploit the structure of the problem studied we also present a general integer programming algorithm that uses column generation to choose the restrictions to solve.
294

Advances in shortest path based column generation for integer programming

Engineer, Faramroze Godrej 22 June 2009 (has links)
Branch-price-and-cut algorithms are among the most successful exact optimization approaches for solving many routing and scheduling problems. This is due, in part, to the availability of extremely efficient and effective dynamic programming algorithms for solving the pricing problem, and the availability of efficient and effective branching schemes and cutting planes that drive integrality. In terms of branch-price-and-cut, two obstacles we face today are (1) being able to solve harder and larger pricing problems, and (2) solving mixed-integer column generation formulations that suffer from relatively weak LP bounds compared to the more traditional 0-1 set partitioning type. As part of the work presented in this thesis, we encounter column generation formulations motivated by real life problems that require overcoming both types of challenges. The first part of this thesis is dedicated to solving the resource constrained shortest path problem (RCSPP) arising in column generation pricing problems for formulations involving extremely large networks and a huge number of local resource constraints. We present a relaxation-based dynamic programming algorithm that alternates between a forward and a backward search. Each search employs bounds derived in the previous search to prune the search, and between consecutive searches, the relaxation is tightened over a set of critical resources and arcs. The second part of this thesis focuses in the fixed charge shortest path problem (FCSPP) in which the amount of resource consumed is itself a continuous bounded variable. By exploiting the structure of optimal solutions to FCSPP, we design and implement a solution approach that relies on solving multiple RCSPPs, and therefore can again make use of extremely efficient and effective dynamic programming algorithms. In the third and final part of this thesis, we present a branch-price-and-cut algorithm for the inventory routing problem (IRP). We extend a class of cuts known for the vehicle routing problem, and develop a new class of cuts specifically for IRP to tighten the formulation. Both the branching schemes and cuts preserve the structure of the pricing problem making them efficiently implementable within a branch-price-and-cut algorithm.
295

Scheduling problems for fractional airlines

Qian, Fei 21 December 2010 (has links)
A column generation based approach is proposed to solve scheduling problems for fractional airlines efficiently and return near optimal schedules. Crew tours are building blocks of our approach, and our approach is focused on exploring more feasible tours than other approaches. In particular, all elements of a crew tour are optimized during the preparation and tour generation procedures. Moreover, time windows of customer-requested flights are handled exactly, and generalized to time window and crew time window of duties and tours. Furthermore, time windows of tours are contained in the MIP formulation to ensure more feasible connections between tours. In the pricing subproblem, an efficient constrained shortest path algorithm is proposed, which is necessary for our model and also provides extensibility for incorporating more complex constraints in the future. Computational results of our model show very small optimality gaps and consistent improvements over the model used in practice. Moreover, restricted versions of our model that have fast running time are provided, thus very desired in the case that running time has more priority than solution quality. In order to understand the demand, data mining of demand data is presented and analyzed. Moreover, a recovery model is proposed to deal with unscheduled maintenance in practice, by reserving airplanes and crews in the model. Computational experiments show the advantage of the recovery model, in the case of simulated unscheduled maintenance and comparing to models without recovery considerations.
296

Methods and Applications in Integer Programming : All-Integer Column Generation and Nurse Scheduling

Rönnberg, Elina January 2008 (has links)
<p>Integer programming can be used to provide solutionsto complex decision and planning problems occurring in a wide varietyof situations. Applying integer programming to a real life problembasically involves a first phase where a mathematical model isconstructed, and a second phase where the problem described by themodel is solved. While the nature of the challenges involved in therespective two phases differ, the strong relationship between theproperties of models, and which methods that are appropriate for theirsolution, links the two phases. This thesis constitutes of threepapers, of which the third one considers the modeling phase, while thefirst and second one consider the solution phase.</p><p> </p><p>Many applications of column generation yield master problems of setpartitioning type, and the first and second papers presentmethodologies for solving such problems. The characteristics of themethodologies presented are that all successively found solutions arefeasible and integral, where the retention of integrality is a majordistinction from other column generation methods presented in theliterature.</p><p> </p><p>The third paper concerns nurse scheduling and describes the results ofa pilot implementation of a scheduling tool at a Swedish nursing ward.This paper focuses on the practical aspects of modeling and thechallenges of providing a solution to a complex real life problem.</p>
297

Pickup and delivery problems with side constraints

Qu, Yuan, Ph. D. 22 February 2013 (has links)
Pickup and delivery problems (PDPs) have been studied extensively in past decades. A wide variety of research exits on both exact algorithms and heuristics for generic variations of the problem as well as real-life applications, which continue to spark new challenges and open up new opportunities for researchers. In this dissertation, we study two variations of pickup and delivery problem that arise in industry and develop new computational methods that are shown to be effective with respect to existing algorithms and scheduling procedures found in practice. The first problem is the pickup and delivery problem with transshipment (PDPT). The work presented here was inspired by a daily route planning problem at a regional air carrier. In structuring the analysis, we describe a unique way to model the transshipment option on a directed graph. With the graph as the foundation, we implemented a branch and price algorithm. Preliminary results showed that it has difficulty in solving large instances. As an alternative, we developed a greedy randomized adaptive search procedure (GRASP) with several novel features. In the construction phase, shipment requests are inserted into routes until all demand is satisfied or no feasible insertion exists. In the improvement phase, an adaptive large neighborhood search algorithm is used to reconstruct portions of the feasible routes. Specialized removal and insertion heuristics were designed for this purpose. We also developed a procedure for generating problem instances in the absence of any in the literature. Testing was done on existing PDP data sets and generated PDPT data set. For the former, the performance and solution quality of the GRASP were comparable to the best known heuristics. For the latter, GRASP found the near optimal solution in most test cases. In the second part of the dissertation, we focus on a new version of the heterogeneous PDP in which the capacity of each vehicle can be modified by reconfiguring its interior to satisfy different types of customer demands. The work was motivated by a daily route planning problem arising at a senior activity center. A fleet of configurable vans is available each day to transport participants to and from the center as well as to secondary facilities for rehabilitative and medical treatment. To find solutions, we developed a two-phase heuristic that makes use of ideas from greedy randomized adaptive search procedures with multiple starts. In phase I, a set of good feasible solutions is constructed using a series of randomized procedures. A representative subset of those solutions is selected as candidates for improvement by solving a max diversity problem. In phase II, an adaptive large neighborhood search (ALNS) heuristic is used to find local optima by reconstructing portions of the feasible routes. Also, a specialized route feasibility check with vehicle type reassignment is introduced to take full advantage of the heterogeneous nature of vehicles. The effectiveness of the proposed methodology is demonstrated by comparing the solutions it provided for the equivalent of several weeks with those that were used in practice and derived manually. The analysis indicates that anywhere from 30% to 40% savings can be achieved with the multi-start ALNS heuristic. An exact method is introduced based on branch and price and cut for settings with more restricted time windows. In the procedure, the master problem at each node in the search tree is solved by column generation to find a lower bound. To improve the bound, subset-row inequalities are applied to the variables of the master problem. Columns are generated by solving the pricing subproblems with a labeling algorithm enhanced by new dominance conditions. Local search on the columns is used to quickly find promising alternatives. Implementation details and ways to improve the performance of the overall procedure are discussed. Testing was done on a set of real instances as well as a set of randomly generated instances with up to 50 customer requests. The results show that optimal solutions are obtained in majority of cases. / text
298

Experimental testing of a steel gravity frame with a composite floor under interior column loss

Hull, Lindsay A. 21 November 2013 (has links)
Progressive collapse research aims to characterize and quantify the behavior of different structural systems in events of extreme local damage caused by bombings to improve the performance of targeted structures and to protect occupants. The focus of the research program described herein is the performance of steel gravity frame structures with composite floor systems in column loss scenarios. The goal of the project is to contribute to the development of rational design guidelines for progressive collapse resistance and to assess any potential weaknesses in current design standards. This thesis presents the results of a series of tests performed on a steel frame structure with simple framing connections and a composite floor slab under interior column loss. The specimen was designed and constructed in accordance with typical design practices and was subjected to increasing uniform floor loads after static removal of the central column. No significant structural damage was observed up to a load equivalent to the ultimate gravity design load. Further testing was performed after the deliberate reduction of the capacity of the steel framing connections, ultimately resulting in total collapse of the specimen. / text
299

Punching shear behaviour of FRP-reinforced concrete interior slab-column connections

Sayed, Ahmed 26 August 2015 (has links)
Flat slab-column connections are common elements in reinforced concrete (RC) structures such as parking garages. In cold weather regions, these structures are exposed to de-icing salts and aggressive environments. Using fiber reinforced polymer (FRP) bars instead of steel in such structures will overcome the corrosion problems associated with steel reinforcement. However, the available literature shows few studies to evaluate the behaviour of FRP-RC interior slab-column connections tested mainly under concentric loads, which seldom occurs in a real building. The main objectives of this research are to deal with this gap by investigating the behaviour of full-scale glass (G) FRP-RC interior slab-column connections subjected to eccentric load and to provide design recommendations for such type of connections. This study consisted of two phases, experimental and analytical. The experimental phase included the construction and testing of ten full-scale interior slab-column connections. The parameters investigated in the experimental phase were flexural reinforcement ratio, concrete compressive strength, type of the reinforcement, moment-to-shear ratio and the spacing between the shear stud reinforcement. Test results revealed that increasing the GFRP reinforcement ratio or the concrete strength increased the connection capacity. Moreover, compared to the control steel-RC specimen, the GFRP-RC connection with similar reinforcement rigidity showed comparable capacity and deflection at failure. Also, increasing the moment-to-shear ratio resulted in a reduction in the vertical load capacity, while using the shear stud reinforcement enhanced the strength up to 23%. In the analytical phase, a 3-D finite element model (FEM) was constructed using specialized software. The constructed FEM was able to predict the experimental results within a reasonable accuracy. The verified FEM was then used to conduct a parametric study to evaluate the effects of perimeter-to-depth ratio, column aspect ratio, slab thickness and a wide range of flexural reinforcement ratio. The numerical results showed that increasing the reinforcement ratio increased the connection capacity. In addition, increasing the perimeter-to-depth ratio and slab thickness reduced the punching shear stresses at failure, while, the effect of the column rectangularity diminished for a ratio greater than three. Moreover, the results showed prominent agreement with the experimental results from literature. / October 2015
300

Validation of a Cleanup Method for Analysis of Novel Brominated Flame Retardants in Biota Matrices Sofie Björklund 2015-05-30 Supervisors Ingrid Ericson

Björklund, Sofie January 2015 (has links)
Brominated flame retardants is a group of compounds present in numerous types of materials in our surroundings. Although their purpose is to slow the progression of a fire, many has been shown to be toxic to the environment. Novel brominated flame retardants have been introduced to the market as old ones have been removed. Reliable methods are crucial to be able to monitor how the novel brominated flame retardant spread and accumulate in the environment. To achieve this, a method validation of a cleanup method using multilayer silica followed by analysis by atmospheric pressure gas chromatography coupled to tandem mass spectroscopy was performed. This method had been previously used for polybrominated diphenyl ethers and the aim was to see if it could be used for analysis of novel brominated flame retardants as well. Spiking experiments showed generally good results, with recoveries of the native compound ranging from 40% to 174%. To apply the method on real matrix samples, eight samples of osprey eggs and five samples of adipose tissue of ringed seal was analyzed. Several novel brominated flame retardants were found, most abundant being the methoxylated polybrominated diphenyl ethers. Dominant congener was 2'-Methoxy-2,3',4,5'-tetrabromodiphenyl ether (2PMBDE#68) followed by 6-Methoxy-2,2',4,4'-tetrabromodiphenyl ether (6PMBDE#47), 5-Methoxy-2,2',4,4'-tetrabromodiphenyl ether (5PMBDE#47) and 5-Methoxy-2,2',4,4',6-pentabromodiphenyl ether (5PMBDE#100) with concentrations ranging from &lt;0,13-13 ng/g lipid weight in osprey eggs and &lt;0,003-249 ng/g lipid weight in ringed seal blubber. Also 1,2-Bis(2,4,6-tribromophenoxy)ethane and pentabromobenzene were found in both osprey eggs and ringed seal blubber. Hexabromobenzene was found in ringed seal blubber and 2,3,5,6-tetrabromo-p-xylene was identified in osprey eggs. / Bromerade flamskyddsmedel är en grupp ämnen närvarande i många olika typer av material i vår omgivning. Även om deras syfte är att bromsa förloppet vid en eldsvåda har många visat sig vara toxiska för miljön. Nya bromerade flamskyddsmedel har kommit ut på marknaden i takt med att gamla tagits bort. Pålitliga metoder är nödvändiga för att övervaka hur nya bromerade flamskyddsmedel sprids och ackumulerar i miljön. För att uppnå detta validerades en metod bestående av flerskiktskiseldioxid och analys med atmosfärstryck-gaskromatografi kopplat till tandem-masspektroskopi. Denna metod hade tidigare använts för analys av polybromerade difenyletrar och målet var att undersöka om samma metod kunde användas för analys ad nya bromerade flamskyddsmedel. Spikning gav generellt goda resultat - utbytet för de nativa ämnena var mellan 40% och 174%. För att pröva metoden på prov med riktigt matris analyserades åtta prov med fiskgjuseägg och fem prov med späck från vikare. Flera nya bromerade flamskyddsmedel hittades, mest förekommande var de metoxylerade polybromerade difenyletrarna. Dominerande kongen var 2'-metoxy-2,3',4,5'-tetrabromodifenyleter, följt av 6-metoxy-2,2',4,4'- tetrabromodifenyleter, 5-metoxy-2,2',4,4'- tetrabromodifenyleter och 5-metoxy-2,2',4,4',6- pentabromodifenyleter i koncentrationer från &lt;0,13-13 ng/g lipidvikt (fiskgjuseägg) och &lt;0,003-249 ng/g lipidvikt (sälspäck). Även 1,2-bis(2,4,6-tribromofenoxy)etan (fiskgjuseägg och sälspäck), pentabromobensen (fiskgjuseägg och sälspäck), hexabromobensen (sälspäck) och 2,3,5,6-tetrabromo-p-xylene (fiskgjuseägg) identifierades.

Page generated in 0.0409 seconds