• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 3
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Měřicí stanice v automatické obráběcí lince / Measuring stations in an automatic machining line

Fúsek, Jakub January 2018 (has links)
This master thesis deals with the use of measuring stations in an automatic machining lines. An overview of the methods of measuring engineering products in engineering practice with a focus on automation of measurement is described. The basic principles of function of these machines, their construction and materials are described. The largest part describes coordinate measuring machines, which continue to evolve and offer more and more possibilities for automatic measurement. The practical part is aimed at documenting the sample situation of measurements on this type of equipment and evaluating the possibility of its integration into the automatic machining line.
12

Study of the Seismic Response of Unanchored Equipment and Contents in Fixed-Base and Base-Isolated Buildings

Nikfar, Farzad January 2016 (has links)
Immediate occupancy and functionality of critical facilities including hospitals, emergency operations centers, communications centers, and police and fire stations is of utmost importance immediately after a damaging earthquake, as they must continue to provide fundamental health, emergency, and security services in the aftermath of an extreme event. Although recent earthquakes have proven the acceptable performance of the structural system in such buildings, when designed according to recent seismic design codes, in many cases damage to the nonstructural components and systems was the main cause of disruption in their functionality. Seismic isolation is proven to be an effective technique to protect building structures from damaging earthquakes. It has been the method of choice for critical facilities, including hospitals in Japan and the United States in recent years. Seismic isolation appears to be an ideal solution for protecting the nonstructural components as well. While this claim was made three decades ago, the supporting research for freestanding (unanchored) equipment and contents (EC) is fairly new. With the focus on freestanding EC, this study investigates the seismic performance of sliding and wheel/caster-supported EC in fixed-base and base-isolated buildings. The study adopts a comparative approach to provide a better understanding of the advantages and disadvantages of using each structural system. The seismic response of sliding EC is investigated analytically in the first part of the thesis, while the response of EC supported on wheels/casters is examined through shake table experiments on two pieces of hospital equipment. The study finds base isolation to be generally effective in reducing seismic demands on freestanding EC, but it also exposes certain situations where isolation in fact increases demands on EC. Increasing the frictional resistance for sliding EC or locking the wheel/casters in the case of wheel/caster-supported EC is highly recommended for EC in base-isolated buildings to prevent excessive displacement demands. Furthermore, the study suggests several design probability functions that can be used by practicing engineers to estimate the peak seismic demands on sliding and wheel/caster-supported EC in fixed-base and base-isolated buildings. / Dissertation / Doctor of Philosophy (PhD)
13

Analýza vibrací pomocí akustické holografie / Using Acoustic Holography for Vibration Analysis

Havránek, Zdeněk January 2009 (has links)
Disertační práce se zabývá bezkontaktní analýzou vibrací pomocí metod akustické holografie v blízkém poli. Akustická holografie v blízkém poli je experimentální metoda, která rekonstruuje akustické pole v těsné blízkosti povrchu vibrujícího předmětu na základě měření akustického tlaku nebo akustické rychlosti v určité vzdálenosti od zkoumaného předmětu. Konkrétní realizace této metody závisí na použitém výpočetním algoritmu. Vlastní práce je zaměřena zejména na rozbor algoritmů, které využívají k rekonstrukci zvukového pole v blízkosti vibrujícího objektu transformaci do domény vlnových čísel (prostorová transformace), kde probíhá vlastní výpočet. V úvodu práce je vysvětlena základní teorie metody akustické holografie v blízkém poli s popisem základních vlastností a dále rozborem konkrétních nejčastěji používaných algoritmům pro lokalizaci a charakterizaci zdroje zvuku a pro následnou vibrační analýzu. Stěžejní část práce se věnuje pokročilým metodám zpracování, které se snaží určitým způsobem optimalizovat přesnost predice zvukového pole v blízkosti vibrujícího předmětu v reálných podmínkách. Jde zejména o problematiku použitého měřicího systému s akustickými snímači, které nejsou ideální, a dále o možnost měření v prostorách s difúzním charakterem zvukového pole. Pro tento případ byla na základě literárního průzkumu optimalizována a ověřena metoda využívající dvouvrstvé mikrofonní pole, které umožňuje oddělení zvukových polí přicházejících z různých stran a tedy úspěšné měření v uzavřených prostorách např. kabin automobilů a letadel. Součástí práce byla také optimalizace, rozšíření a následné ověření algoritmů publikovaných v posledních letech pro měření v reálných podmínkách za použití běžně dostupných akustických snímačů.
14

Mechanics of Cross-Laminated Timber

Buck, Dietrich January 2018 (has links)
Increasing awareness of sustainable building materials has led to interest in enhancing the structural performance of engineered wood products. Wood is a sustainable, renewable material, and the increasing use of wood in construction contributes to its sustainability. Multi-layer wooden panels are one type of engineered wood product used in construction. There are various techniques to assemble multi-layer wooden panels into prefabricated, load-bearing construction elements. Assembly techniques considered in the earliest stages of this research work were laminating, nailing, stapling, screwing, stress laminating, doweling, dovetailing, and wood welding. Cross-laminated timber (CLT) was found to offer some advantages over these other techniques. It is cost-effective, not patented, offers freedom of choice regarding the visibility of surfaces, provides the possibility of using different timber quality in the same panel at different points of its thickness, and is the most well-established assembly technique currently used in the industrial market. Building upon that foundational work, the operational capabilities of CLT were further evaluated by creating panels with different layer orientations. The mechanical properties of CLT panels constructed with layers angled in an alternative configuration produced on a modified industrial CLT production line were evaluated. Timber lamellae were adhesively bonded in a single-step press procedure to form CLT panels. Transverse layers were laid at a 45° angle instead of the conventional 90° angle with respect to the longitudinal layers’ 0° angle. Tests were carried out on 40 five-layered CLT panels, each with either a ±45° or a 90° configuration. Half of these panels were evaluated under bending: out-of-plane loading was applied in the principal orientation of the panels via four-point bending. The other twenty were evaluated under compression: an in-plane uniaxial compressive loading was applied in the principal orientation of the panels. Quasi-static loading conditions were used for both in- and out-of-plane testing to determine the extent to which the load-bearing capacity of such panels could be enhanced under the current load case. Modified CLT showed higher stiffness, strength, and fifth-percentile characteristics, values that indicate the load-bearing capacity of these panels as a construction material. Failure modes under in- and out-of-plane loading for each panel type were also assessed. Data from out-of-plane loading were further analysed. A non-contact full-field measurement and analysis technique based on digital image correlation (DIC) was utilised for analysis at global and local scales. DIC evaluation of 100 CLT layers showed that a considerable part of the stiffness of conventional CLT is reduced by the shear resistance of its transverse layers. The presence of heterogeneous features, such as knots, has the desirable effect of reducing the propagation of shear fraction along the layers. These results call into question the current grading criteria in the CLT standard. It is suggested that the lower timber grading limit be adjusted for increased value-yield. The overall experimental results suggest the use of CLT panels with a ±45°-layered configuration for construction. They also motivate the use of alternatively angled layered panels for more construction design freedom, especially in areas that demand shear resistance. In addition, the design possibility that such 45°-configured CLT can carry a given load while using less material than conventional CLT suggests the potential to use such panels in a wider range of structural applications. The results of test production revealed that 45°-configured CLT can be industrially produced without using more material than is required for construction of conventional 90°-configured panels. Based on these results, CLT should be further explored as a suitable product for use in more wooden-panel construction. / <p>External cooperation: Martinson Group AB and Research Institutes of Sweden (RISE)</p>

Page generated in 0.1805 seconds