• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Non-Ionic Surfactants and Nano-Particles on the Stability of Foams

Wang, Ruijia 27 April 2010 (has links)
The thin film pressure balance (TFPB) technique were used to study the stability of single foam films produced in the presence of n-alkyl polyoxyethylene (CnEOm) homologues. The results showed that films thin faster than predicted by the classical DLVO theory, which considers contributions from the van der Waals-dispersion and double-layer forces to the disjoining pressure of the film. The discrepancy may be attributed to the presence of hydrophobic force, the magnitude of which has been estimated using the Reynolds lubrication approximation. It has been found that the attractive hydrophobic force was substantially larger than the attractive van der Waals force, which may explain the faster film thinning kinetics. With a given non-ionic surfactant, the hydrophobic force decreased with increasing surfactant concentration, which explained the slower kinetics observed at higher concentrations and hence the increased foam stability. At concentrations where the hydrophobic force became comparable to or smaller than the van der Waals force, the foam films were stabilized by the increased elasticity of the foam films. The film elasticity of the surfactant solutions were measured using the oscillating drop analysis technique at different frequencies. The measurements were conducted in the presence of CnEOm surfactants with n=10-14 and m=4-8, and the results were analyzed using the Lucassen and van den Tempel model (1972). There was a reasonable fit between the experiment and the model predictions when using the values of the Gibbs elasticity calculated from the Wang and Yoon model (2006). From this exercise, it was possible to determine the diffusion coefficients (D) of the CnEOm surfactants. The D values obtained for CnEOm surfactants were in the range of 2.5x10-10 to 6x10-9 m2s-1, which are in general agreement with those reported in the literature for other surfactants. The diffusion coefficient decreased with increasing alkyl chain length (n) and increased with increasing chain length (m) of the EO group. These findings are in agreement with the results of the dynamic surface tension measurements conducted in the present work. The TFPB studies were also conducted on the foam films stabilized in the presence of a mixture of C12EO8 and sodium dodecylsulfate (SDS) at different ratios. The results showed that the hydrophobic force increased with increasing C12EO8 to SDS ratio. Thus, the former was more effective than the latter in decreasing the hydrophobic force and hence stabilizing foam films. The C12EO8 was more efficient than SDS in increasing the elasticity of the single foam films and stabilizing foams. The TFPB studies were also conducted in the presence of n-octadecyltimethyl chloride (C18TACl) and polymers, i.e., polyvinylpyrrolidone (PVP) and polystyrene sulfonate (PSS). The effect of polymer on the film elasticity was strongest in the presence of PSS, which can be attributed to the charge-charge interaction. Nano-sized silica and poly methyl methacrylate (PMMA) particles were used as solid surfactants to stabilize foams. It was found that the foam stability was maximum at contact angles just below 90o. The TFPB studies conducted with silica nano-particles showed that the kinetics of foam films became slower as the contact angle was increased from 30o to 77 o , indicating that foam films becomes more stable with more hydrophobic particles. The extra-ordinary stability observed with the hydrophobic silica nano-particles may be attributed to the possibility that the particles adsorbed on bubble surfaces retard the drainage rate and prevent the films to reach the critical rupture thickness (Hc). Confocal microscope and SEM images showed that hydrophobized nano-particles adsorbed on the surfaces of air bubbles, and that some of the nano-particles form aggregates depending on the particle size and hydrophobicity. The dynamic surface tension measurements conducted with PMMA and silica nano-particles showed that the latter has higher diffusion rates than the former, which may be due to the differences in particle size and hydrophobicity. / Ph. D.
2

Auto-organização de anfifílicos sobre substratos sólidos imersos / Self-oganization of amphiphilics on immersed gold subtrates

Gomes, Wyllerson Evaristo 1983- 15 August 2018 (has links)
Orientador: David Mendez Soares / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-15T00:08:17Z (GMT). No. of bitstreams: 1 Gomes_WyllersonEvaristo1983-_M.pdf: 20027750 bytes, checksum: ac9756c2723f3eb80a562d792355af61 (MD5) Previous issue date: 2010 / Resumo: As propriedades dinâmicas e estruturais de filmes de surfatantes adsorvidos em superfícies são de interesse fundamental e aplicado. Investigamos a formação de estruturas auto-organizadas de surfatantes sobre superfícies de substrato sólido de ouro. Estudamos sua dinâmica de formação e estabilidade. As estruturas foram feitas em ambiente aquoso, sob condições físico-químicas controladas. Tais estruturas são potenciais candidatas a modelos in vitro de membrana biológica (sistema biomimético) / Abstract: The structural and dynamical properties of surfactant films are both of fundamental and applied interest. To understand the formation mechanism of these structures we have studied the formation of surfactant self-assembled aggregates on gold surfaces. Their dynamic and stability were investigated. All experiments were performed in aqueous media, under specific physical and chemical conditions. These structures are potential candidates of in vitro models for biological membranes (bio-mimetic systems) / Mestrado / Físico-Química / Mestre em Física
3

Multiphase, Multicomponent Systems: Divalent Ionic Surfactant Phases and Single-Particle Engineering of Protein and Polymer Glasses

Rickard, Deborah January 2011 (has links)
<p>This thesis presents an analysis of the material properties and phase behavior of divalent ionic surfactant salts, and protein and polymer glasses. There has been extensive interest in understanding the phase behavior of divalent ionic surfactants due to the many applications of ionic surfactants in which they come into contact with divalent ions, such as detergency, oil recovery, and surfactant separation processes. One goal of determining the phase boundaries was to explore the option of incorporating a hydrophobic molecule into the solid phase through the micelle-to-crystal bilayer transition, either for drug delivery applications (with a biologically compatible surfactant) or for the purpose of studying the hydrophobic molecule itself. The liquid micellar and solid crystal phases of the alkaline earth metal dodecyl sulfates were investigated using calorimetry, visual inspection, solubilization of a fluorescent probe, and x-ray diffraction. The Krafft temperature and dissolution enthalpy were determined for each surfactant, and partial composition-temperature phase diagrams of magnesium dodecyl sulfate-water, calcium dodecyl sulfate-water, as well as sodium dodecyl sulfate with MgCl<sub>2</sub> and CaCl<sub>2</sub> are presented. As a proof of concept, fluorescence microscopy images showed that it is, in fact, possible to incorporate a small hydrophobic molecule, diphenylhexatriene, into the solid phase.</p><p>The second, and main, part of this thesis expands on work done previously in the lab by using the micropipette technique to study two-phase microsystems. These microsystems consist of a liquid droplet suspended in a second, immiscible liquid medium, and can serve as direct single-particle studies of drug delivery systems that are formed using solvent extraction (e.g., protein encapsulated in a biodegradable polymer), and as model systems with which to study the materials and principles that govern particle formation. The assumptions of the Epstein-Plesset model, which predicts the rate of droplet dissolution, are examined in the context of the micropipette technique. A modification to the model is presented that accounts for the effect a solute has on the dissolution rate. The modification is based on the assumption that the droplet interface is in local thermodynamic equilibrium, and that the water activity in a solution droplet can be used to determine its dissolution (or dehydration) rate. The model successfully predicts the dissolution rates of NaCl solutions into octanol and butyl acetate up to the point of NaCl crystallization. The dehydration of protein solutions (lysozyme or bovine serum albumin) results in glassified microbeads with less than a monolayer of water coverage per protein molecule, which can be controlled by the water activity of the surrounding organic medium. The kinetics of dehydration match the prediction of the activity-based model, and it is shown how the micropipette technique can be used to study the effect of dissolution rate on final particle morphology. By using a stable protein with a simple geometry (lyosyzme), this technique was be used to determine the distance dependence of protein-protein interactions in the range of 2-25 &Aring;, providing the first calculation of the hydration pressure decay length for globular proteins. The distance-dependence of the interaction potential at distances less than 9 &Aring; was found to have a decay length of 1.7 &Aring;, which is consistent with the known decay length of hydration pressure between other biological materials. Biodegradable polyesters, such as poly(lactide-co-glycolide) (PLGA), are some of the most common materials used for the encapsulation of therapeutics in microspheres for long-term drug release. Since they degrade by hydrolysis, release rates depend on water uptake, which can be affected by processing parameters and the material properties of the encapsulated drug. The micropipette technique allows observations not possible on any bulk preparation method. Single-particle observations of microsphere formation (organic solvent extraction into a surrounding aqueous phase) show that as solvent leaves the microsphere and the water concentration in the polymer matrix becomes supersaturated, water phase separates and inclusions initially grow quickly. Once the concentration in the polymer matrix equilibrates with the surrounding aqueous medium, the water inclusions continue to grow due to dissolved impurities, solvent, and/or water-soluble polymer fragments resulting from hydrolysis, all of which locally lower the water activity in the inclusion. Experiments are also presented in which glassified protein microbeads were suspended in PLGA solution prior to forming the single microspheres. This technique allowed the concentration of protein in a single microbead/inclusion to be determined as a function of time.</p> / Dissertation
4

Primena sistema hitozan-jonska površinski aktivna materija za dobijanje mikrokapsula uljnog sadržaja / Application of chitosan-ionic surfactant system for the preparation of microcapsules with oil content

Milinković Budinčić Jelena 05 July 2019 (has links)
<p style="text-align: justify;">Mikrokapsulacija je tehnika kojom se nestabilne, međusobno inkompatibilne i biolo&scaron;ki aktivne supstance prevode u stabilniji oblik, ili se omogućuje njihovo kontrolisano i ciljano oslobađanje. Osobine formiranih mikrokapsula, kinetika i mesto otpu&scaron;tanja inkapsuliranih materija zavise, pre svega, od njihovog omotača. Savremene tendencije razvoja prehrambenih proizvoda i proizvoda farmaceutske i kozmetičke industrije, su sve vi&scaron;e usmerene ka upotrebi prirodnih i biorazgradivih polimernih materija za formiranje omotača mikrokapsula.<br />Cilj ove disertacije je mogućnost primene hitozana, netoksičnog, biorazgradivog derivata hitina, kao materije omotača mikrokapsula sa uljnim sadržajem. S obzirom na njegovu slabu povr&scaron;insku aktivnost, istraživanja su usmerena na primenu interakcija hitozana sa suprotno naelektrisanim jonskim povr&scaron;inski aktivnim materijama (PAM) u vodenim rastvorima, kao mehanizmu za njegovo deponovanje na graničnoj povr&scaron;ini ulje/voda.<br />Primenom različitih metoda (tenziometrija, viskozimetrija, turbidimetrija, merenje elektroforetske pokretljivosti) interakcije hitozana sa natrijum-dodecil-sulfatom (SDS) i natrijum-lauriletar-sulfatom (SLES) su detaljno ispitane. Definisane su promene kako na granici faza, tako i unutar rastvora, a mehanizam formiranja kompleksa hitozan/PAM različitih osobina je u potpunosti razja&scaron;njen. Utvrđeno je da do formiranja stabilnog koacervata dolazi pri masenom odnosu hitozan:SLES 1:2 i hitozan:SDS 1:2.<br />Ispitivanje uticaja interakcije hitozan-PAM na osobine emulzionih sistema tipa ulje u vodi (veličina i raspodela veličina kapi, stabilnost) omogućilo je odabir hitozan-SLES sistema kao omotača pogodnog za dobijanje mikrokapsula uljnog sadržaja. Na osnovu ovih rezulatata kao uljna faza odabrani su trigliceridi srednje dužine ugljovodoničnih lanca (TSDL). Su&scaron;enjem emulzija primenom spray drying postupka dobijene se mikrokapsule uljnog sadržaja sa vitaminom E i ispitan je uticaj umreživača na njihove osobine. Karakterizacijom dobijenih mikrokapsula (određivanje sadržaja vlage, ispitivanje morfologije povr&scaron;ine, efiksanost inkapsulacije vitamina E, kinetika otpu&scaron;tanja vitamina E u in vitro uslovima) zaključeno je da na osobine mikrokapsula utiče vrsta i koncentracija umreživača. Mikrokapsule čiji omotač nije umrežen pokazale su najbolje karakteristike.</p> / <p>Microencapsulation is a technique that unstable, incompatible and biologically active substances converted to a more stable form, or allow their controlled and targeted release. The properties of formed microcapsules, kinetics and the place of release of encapsulated substances, primarly depend on their shell characteristic. Modern trends in the development of food products and products of the pharmaceutical and cosmetic industries are increasingly focused on the use of natural and biodegradable polymeric materials for coatings.<br />The aim of this dissertation is to investigate the possibility of using chitosan, non-toxic and biodegradable chitin derivative, as a shell material of microcapsules with oil content. Due to its low surface activity, the research is focused on the utilization of chitosan interactions with opositly charged ionic surfactants (sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES)) in aqueous solutions as mechanisms for its depositing at the oil/water interface.<br />Based on detailed investigation of interactions in the chitosan-ionic surfactant systems using different methods (tensiometry, viscometry, turbidimetry, measurement of electrophoretic mobility), changes have been defined both at the interface and within the bulk, as well as the mechanism of formation of the coacervate phase. It has been determined that at chitosan:SLES and chitosan:SDS mass ratio of 1:2 stabile coacervate were formed.<br />An investigation of the influence of interaction on the properties of oil-in-water emulsion systems (size and distribution of droplet size, stability) enabled the chitosan-SLES system to be selected as a shell suitable for obtaining microcapsules of the oil content. Also, based on these results, medium-chain triglycerides were selected as the oil phase of the emulsion.<br />Microcapsules with vitamin E were obtained by spray drying of emulsions stabilized with chitosan/SLES complex. The influence of the crosslinker on the properties of microcapsules was investigated. Characterization of obtained microcapsules (moisture content determination, investigation of the surface morphology, efficiency of the vitamin E encapsulation, release in vitro kinetics of vitamin E) showed that type and concentration of crosslinking agents had influences the properties of microcapsules. Microcapsules without crosslinking agents have the most suitable characteristics.</p>
5

Nejonogeninių paviršinio aktyvumo medžiagų įtaką emulsijos (a/v) stabilumui / Total impact of non-ionic surfactants to stability of an (o/w) emulsion

Kapočiūtė, Aistė 18 June 2014 (has links)
Šio darbo tikslas - ištirti polioksietilen(20) sorbitano monolaurato, sorbitano monopalmitato, polioksietilen(20) sorbitano tristearato ir sorbitano trioleato įtaką alkilakrilato krospolimero tiesioginės (a/v) emulsijos stabilumui. Tyrimo objektai - emulsija, pagaminta naudojant 0,6% koncentracijos alkilakrilato krospolimerą; nejonogeninės paviršinio aktyvumo medžiagos: polioksietilen(20) sorbitano monolauratas (Tween 20), sorbitano monopalmitatas (Span 40), polioksietile(20) tristearatas (Tween 65) ir sorbitano trioleatas (Span 85). Tyrimo uždaviniai: išanalizuoti literatūros duomenis apie nejonogenines paviršinio aktyvumo medžiagas ir jų įtaką alkilakrilato krospolimero emulsinėms savybėms; ištirti paviršinio aktyvumo medžiagų: polioksietilen(20) sorbitano monolaurato, sorbitano monopalmitato, polioksietilen(20) sorbitano tristearato ir sorbitano trioleato įtaką emulsinių lašelių dydžiui ir klampai; įvertinti paviršinio aktyvumo medžiagų įtaką emulsijos fiziniam stabilumui taikant diferencinio centrifugavimo testą ir šaldymo - šildymo ciklą; įvertinti laikymo sąlygų įtaką emulsinių lašelių dydžiui ir stabilumui. Literatūros analizė parodė, kad net maža alkilkrospolimero koncentracija (0,2-0,8%) pasižymi geromis emulsinėmis savybėmis ją derinant su nejonogeninėmis PAM. Rasta duomenų apie šio polimero sąveiką su polioksietilen(20) sorbitano trioleatu (Tween 85), tačiau šiame darbe tyrinėjami objektai iki šiol nebuvo tyrinėti, todėl yra aktualu ištirti nejonogeninių PAM... [toliau žr. visą tekstą] / Thesis goal - to explore impact of polyethylene glycol sorbitan monolaurate, sorbitan monopalmitate, polyethylene sorbitan tristearate and sorbitan trioleate to stability of direct (oil/water) emulsion of alkyl acrylate crosspolymer. Thesis object – emulsion, made with 0,6% concentration of Alkyl Crosspolymer; non-ionogenic surfactants: polyoxyethylene (20) sorbitan monolaurate, sorbitan monopalmitate, polyoxyethylene (20) sorbitan tristearate, sorbitan trioleate. Thesis objectives – To analyse sources of literary about the effects of non-iogenic surfactants on the stability of emulsion with alkyl acrylate crosspolymer; influence of non-ionogenic surfactants to size of emulsion droplets and viscosity; influence of non-ionogenic surfactants to physical stability of emulsion during centrifugation test and heating-cooling cycle; influence of conditional atmosphere to size of emulsion droplets and stability. The analysis of literary sources revealed that even a small concentration of Alkyl Crosspolymer (0.2–0.8%) has good emulsion properties, when combined with non-ionogenic surfactants. Data on the interaction of this polymer with polyoxyethylene (20) sorbitan trioleate (Tween 85) has been found; however, objects studied in this thesis have not been explored before, thus it is relevant to analyze the effects of non-iogenic surfactants on the stability of emulsion with alkyl acrylate crosspolymer. The obtained results showed that the analyzed non-ionogenic surfactants influence... [to full text]
6

Etude des mécanismes de libération d'actifs nanodispersés : application au traitement de puits

Rondon, Céline 14 December 2010 (has links)
L’exploitation de pétrole s’accompagne de la modification des conditions thermodynamiques internes du puits et favorise, entre autres, la formation de dépôts minéraux pouvant obstruer les pores micrométriques de la formation rocheuse, rendant difficile l’extraction d’huile. L’efficacité du traitement anti-dépôts dépend de la concentration minimale d’inhibiteur et de la vitesse de relargage du produit. Dans ce contexte, nous avons étudié deux techniques d’encapsulation permettant d’obtenir un système préventif à libération prolongée contenant un polyélectrolyte anionique comme additif modèle. La première consiste en la formation de nanoparticules de polyélectrolytes complexés. La libération de l’actif encapsulé y a été stimulée par la modulation de la salinité du milieu. À pH basique, la libération de l’actif a lieu via le mécanisme de gonflement /dissociation des particules, à pH acide aucune libération ne parait avoir lieu car les objets précipitent. Le second système est une émulsion inverse (E/H) diluée contenant un actif modèle en phase dispersée. Ces systèmes sont stables et un faible pourcentage d’actif est libéré sous contrainte mécanique. / Many thermodynamic changes occur in reservoir rock when oil is produced. These changes enable scale formation on micrometric rock pores that can block them and impede/block oil extraction. Antiscale treatment efficiency depends on minimal inhibitor concentration and product release rate in fluids downhole. In this context, we have studied two encapsulation techniques allowing us to have a sustainable release system composed of an anionic polyelectrolyte as a model additive. The first formulation consists in formation of polyelectrolyte complexes nanoparticles. In this system, active ingredient release was stimulated through medium ionic strength modulation. Under basic conditions, release takes place in particles swelling/dissociation process; whereas, under acidic condition, particles precipitate and no release can be expected. The second system we have worked on is a diluted reverse (W/O) emulsion, in which dispersed aqueous droplets contain a model additive. These systems are stable and small additive percentage is released under mechanic strain.
7

Tomografia por coerência óptica (OCT), reologia, análise térmica e tamanho de partículas aplicados na caracterização de sistemas emulsionados de orientação de uso cosmético / Optical coherence tomography (OCT), rheology, thermal analysis and particle size determination applied for the characterization of cosmetic use emulsified systems

Prestes, Paula Souza 17 February 2012 (has links)
Os atributos físicos, físico-químicos e químicos dos sistemas emulsionados são influenciados pelas características das gotículas da fase interna destes, como: concentração, tamanho e morfologia. Dessa forma, os objetivos envolveram a caracterização física e físico-química de sistemas emulsionados obtidos a partir dos tensoativos álcool estearílico 21 OE (óxidos de etileno) (steareth-21) e álcool oleílico 20 OE (oleth-20), bem como, a introdução da tomografia por coerência óptica (OCT) como técnica analítica para determinação do tamanho de partículas e caracterização morfológica das emulsões. Prepararam-se três formulações, diferindo-se no tensoativo utilizado, sendo o sistema emulsionado SE-1 composto por 8,0% (p/p) de oleth-20; o SE-2 por 4,0% (p/p) de oleth-20 e 4,0% (p/p) steareth-21; e o SE-3 por 8,0% (p/p) steareth-21. Avaliaram-se a estabilidade preliminar, o valor de pH, os perfis reológico e termogravimétrico. A presença de fase gel cristalina foi determinada por meio da microscopia com luz polarizada e, o tamanho das gotículas, por meio da microscopia óptica comum, difração a laser e OCT. As amostras não apresentaram sinais de instabilidade por meio dos testes da centrifugação e do estresse térmico. O valor de pH foi considerado compatível com o da pele humana (4,6 a 5,8). Os sistemas apresentaram comportamento reológico não-Newtoniano pseudoplástico. SE-1 apresentou viscosidade aparente inferior (223,53 mPa.s) e área de histerese (2238,38 Pa/s) estatisticamente igual ao SE-2 (2911,19 Pa/s); SE-2 apresentou valor intermediário de viscosidade aparente (332,20 mPa.s) e, SE-3, valores superiores para ambos os parâmetros (636,40 mPa.s e 4248,97 Pa/s). Os testes oscilatórios constataram a predominância do caráter elástico para os três sistemas. Por meio da termogravimetria, o perfil das três amostras foi semelhante, independentemente do tipo e concentração do tensoativo não-iônico. Observou-se a presença de fase gel cristalina para os três sistemas, sendo aparentemente mais pronunciado para o SE-2. Tanto na análise microscópica quanto na difração a laser foram obtidos tamanho médio de partículas menor que 6,0 &#181;m. De acordo com os resultados da OCT, as partículas menores que 6,0 &#181;m não foram possíveis de serem conclusivamente observadas e aquelas maiores sugeriram ser a fase interna dos sistemas. / The physical, physicochemical and chemical attributes of the emulsified systems are influenced by the characteristics of their internal phase droplets, such as: concentration, size and morphology. Thus, the aims involved the physical and physicochemical characterization of emulsions obtained from the stearyl alcohol condensed with 21 mols ethylene oxide (EO) (steareth-21) and oleyl alcohol with 20 mols EO (oleth-20), as well as, the introduction of the optical coherence tomography (OCT) as the analytical technique tool to the determination of the particle size and morphological characterization of the emulsified systems. Three formulations were prepared, differing at the surfactant used, being the emulsified system SE-1 composed by 8.0% (p/p) of oleth-20, the SE-2 by 4.0% (p/p) of oleth-20 and 4.0% (p/p) steareth-21; and the SE-3 by 8.0% (p/p) steareth-21. The preliminary stability was evaluated, such as the ph value and the rheological and thermogravimetric profiles. The presence of the crystalline gel phase was determined from microscopy with polarized light and the droplet size through regular optical microscopy, laser diffraction and OCT. The samples did not present signs of instability throughout the centrifugation and thermal stress tests. The ph value was considered compatible to human skin (4.6 to 5.8). Systems represent the non-Newtonian pseudoplastic rheological behaviour. The SE-1 presented inferior apparent viscosity (223.53 mPa.s) and the hysteresis area (2238.38 Pa/s) statistically equal to SE-2 (2911.19 Pa/s); the SE-2 presented an average value of apparent viscosity (332.20 mPa.s) and, the SE-3, superior values to both parameters (636.40 mPa.s and 4248.97 Pa/s). The oscillating tests verified the elastic character predomination to the three systems. Throughout the thermogravimetry, the profile of the three samples was similar, independent from the kind and concentration of the non-ionic surfactant. The presence of the crystalline gel phase was identified at the three systems, being apparently more pronounced to the SE-2. Either at the microscopic analysis as well as at the laser diffraction were obtained an average size of the particles minor than 6.0 &#181;m. According to OCT results, the particles below 6.0 &#181;m were not possible to be identified and the major particles were suggested be the internal phase of the systems, however new studies should be performed.
8

The central regulation of blood pressure and salt appetite by brain 11β- hydroxysteroid dehydrogenase type 2 : a novel gene targeting technique

McNairn, Julie Anne January 2018 (has links)
Hypertension is the chronic elevation in blood pressure that is regulated in part through the retention and regulation of sodium retention and excretion in the kidneys. Hence the kidney has been considered the organ that regulates blood pressure. There are a cohort of patients that suffer with high blood pressure due to lack of 11β-hydroxysteroid dehydrogenase-type 2 (11β-HSD2) expression (which inactivates glucocorticoids (GCs), allowing selective activation of mineralocorticoid receptors (MR) by aldosterone) that results in hypertensive and increased salt appetite phenotypes - a condition known as syndrome of apparent mineralocorticoid excess (SAME). This disorder can be recapitulated in the mouse through the global deletion of 11β-HSD2, which results in over activation of the MR driving an elevation in blood pressure. However, the distinction between blood pressure elevation because of kidney dysfunction with loss of 11β-HSD2 or increased salt appetite due to loss of brain 11β-HSD2 expression is not clear from the global 11β-HSD2 knockout model. Salt appetite is regulated by regions of the brain out-with the blood-brain barrier, known as circumventricular organs. In the mouse, salt appetite is controlled by aldosterone-sensitive cells in the nucleus of the solitary tract (NTS) in the brain stem, where 11β-HSD2 is expressed to provide mineralocorticoid selectivity. However, in the fetal brain, 11β-HSD2 is widely expressed, protecting against adverse GC action that alters brain development and increases susceptibility to psychiatric disorders as adults. 11β-HSD2 deletion solely in the brain from embryonic day 12 resulting in GC fetal programming (HSD2BKO) causes effects on both behaviour and salt appetite. To determine the role of developmental versus adult expression of brain 11β- HSD2, mice with deletion of brain 11β-HSD2 from mid gestation (HSD2BKO) and mice with adult deletion of 11β-HSD2 in the NTS using lentivirus (HSD2.v- BKD) were compared. The phenotypes (salt appetite, blood pressure (BP), baroreceptor response (BRR) and cognition), can be categorised as either due to GC fetal programming (as indicated by HSD2BKO groups), or increased activation of MR in adult 11β-HSD2 expressing neurons (recapitulated in the HSD2.v-Cre groups). Salt appetite increased in both HSD2BKO and HSD2.v-BKD cohorts (mean percentage increase 65% n=8 and 46% n=6, compared to their respective controls), leading to an increased BP in both groups (+12% and +8%, respectively) as well as an impaired BRR, indicating all phenotypes are mediated by adult NTS neurons. However, spatial recognition memory (Object-in-Place task) is abolished in HSD2BKO mice, whereas, HSD2.v-BKD mice still retain short-term memory. Our data suggest that neural 11β-HSD2 protects against inappropriate activation of MR by corticosterone to regulate salt appetite and salt-induced rises in blood pressure. However, spatial recognition memory is not influenced by deletion of 11β-HSD2 in the adult brain, confirmation that this phenotype is underpinned by developmental programming by GCs, which is observed in the 11β-HSD2 brain KO. Salt appetite has been shown to be centrally regulated through the adult deletion of 11β-HSD2. From this, our data suggest that an increased salt appetite is due to adult loss of function of 11β-HSD2 rather than GC programming during development. Highlighting the NTS as a region for drug delivery to try and control salt appetite in salt sensitive individuals who struggle with administering a recommended change in diet. To develop this further, minimally invasive modes of delivery of viruses and drugs into the brain were investigated. In so doing, a non-invasive and reversible method to temporarily disrupt the blood brain barrier (BBB) was optimised. The technique required acoustic insonation of ultrasonic contrast agents (CAs) (gas microbubbles) adjacent to the BBB. These microbubbles (SonoVueTM, Bracco) were delivered via tail vein injection into the vasculature. To target the BBB, an ultrasonic transducer was suspended and focused through coupling gel onto the area of interest in the brain with skull the intact. The optimisation of this technique required determination of the focal position of the 3.5MHz transducer that was utilised, in addition to optimisation of the pulse length, pulse repetition frequency and power output of the ultrasound beam to enable the BBB to be disrupted. In addition, measurement of the attenuation of the ultrasound beam through ex vivo mouse skulls were measured. These results showed a 50% reduction in pressure amplitude from the baseline of 335.2mV (Baseline mean = 100% +/-SEM 0 n=3 (No skull), five regions across the skull averaged 47.79% +/-SEM 1.913 n=25 (using 5 different animals). In in vivo mice, after co-injection of the microbubbles with Evans Blue and insonation of the brain, disruption of the BBB was confirmed by the presence of Evans Blue dye in the brain, with no measurable damage occurring in the brain. This was confirmed by cell and nuclear morphology with no red blood cell extravasation into the surrounding tissue. The parameters used to open the BBB used a peak negative pressure of 2.1MPa (single pulse), transducer frequency 3.5MHz, 35,000 cycles over a 10ms burst at a pulse repetition frequency of 10Hz. The technique when applied in vivo in recovery animals is speculated to work by the focused ultrasound causing the microbubbles to oscillate within the vasculature adjacent to the BBB, resulting in high-shear stresses being generated on the tight junctions within the BBB. The resultant gaps in the BBB allow free circulating compounds (e.g. large dye molecules (Evans Blue - 960.8g/mol molecular weight) and adeno-associated-viruses (25nm with a packing capacity of 4.5kb) within the blood to pass into the brain, but there is no penetration of red blood cells (7μm). Longitudinal mouse experiments demonstrated that within 12-hours these gaps close with no long-term damage observed. Currently, utilising this technique, successful passage of an adeno-associated virus expressing GFP (as a marker) has been shown to pass into the brain (n=6 for each cohort including control) - indicating that the virus requires the ultrasound and microbubbles to facilitate its movement into the brain. Further technique optimisation is being explored looking at the role of CAs used in the opening and disruption of the BBB, comparing composition and size of the CAs. Microbubbles (2-3μm) and nanobubbles (200nm) were compared as well as lipid and non-ionic surfactant surface compositions, using volume of drug delivery and degree of disruption as outputs. Using this technique, the hydrophilic drug mimic calcein was delivered into the brain (n=5 non-ionic surfactant nanobubble, n=5 lipid nanobubble). Results have indicated that the delivery of calcein is most efficient when using non-ionic surfactant nanobubbles as opposed to lipid nanobubbles - with a greater volume of the drug being delivered into the cerebral tissue. Furthermore, the concentration and surface composition of the nanobubble have an effect as to the size and potential damage to the brain when opening the BBB. In conclusion, it has been shown that it is possible to non-invasively open the BBB and deliver viruses and dye into the brain. In addition, this thesis has investigated the use of nanobubbles as both facilitators to opening the BBB and delivery vectors for potentially therapeutic drugs. Finally, a non-invasive opening of the BBB has been achieved using focused ultrasound. Ultimately this non-invasive opening of the BBB can be used to achieve delivery of larger molecules (such as antibodies and viruses) into the brain to target treatments. Focused ultrasound brain targeting can be applied to the potential treatment of salt appetite regulation in the NTS. For the individuals who suffer from salt sensitive hypertension, the NTS can be targeted to reduce the drive to ingest high salt diets. Furthermore, the continuation of research into the central control of BP, salt appetite and baroreceptor reflex control can become better understood, using less invasive delivery techniques to the brain.
9

Tomografia por coerência óptica (OCT), reologia, análise térmica e tamanho de partículas aplicados na caracterização de sistemas emulsionados de orientação de uso cosmético / Optical coherence tomography (OCT), rheology, thermal analysis and particle size determination applied for the characterization of cosmetic use emulsified systems

Paula Souza Prestes 17 February 2012 (has links)
Os atributos físicos, físico-químicos e químicos dos sistemas emulsionados são influenciados pelas características das gotículas da fase interna destes, como: concentração, tamanho e morfologia. Dessa forma, os objetivos envolveram a caracterização física e físico-química de sistemas emulsionados obtidos a partir dos tensoativos álcool estearílico 21 OE (óxidos de etileno) (steareth-21) e álcool oleílico 20 OE (oleth-20), bem como, a introdução da tomografia por coerência óptica (OCT) como técnica analítica para determinação do tamanho de partículas e caracterização morfológica das emulsões. Prepararam-se três formulações, diferindo-se no tensoativo utilizado, sendo o sistema emulsionado SE-1 composto por 8,0% (p/p) de oleth-20; o SE-2 por 4,0% (p/p) de oleth-20 e 4,0% (p/p) steareth-21; e o SE-3 por 8,0% (p/p) steareth-21. Avaliaram-se a estabilidade preliminar, o valor de pH, os perfis reológico e termogravimétrico. A presença de fase gel cristalina foi determinada por meio da microscopia com luz polarizada e, o tamanho das gotículas, por meio da microscopia óptica comum, difração a laser e OCT. As amostras não apresentaram sinais de instabilidade por meio dos testes da centrifugação e do estresse térmico. O valor de pH foi considerado compatível com o da pele humana (4,6 a 5,8). Os sistemas apresentaram comportamento reológico não-Newtoniano pseudoplástico. SE-1 apresentou viscosidade aparente inferior (223,53 mPa.s) e área de histerese (2238,38 Pa/s) estatisticamente igual ao SE-2 (2911,19 Pa/s); SE-2 apresentou valor intermediário de viscosidade aparente (332,20 mPa.s) e, SE-3, valores superiores para ambos os parâmetros (636,40 mPa.s e 4248,97 Pa/s). Os testes oscilatórios constataram a predominância do caráter elástico para os três sistemas. Por meio da termogravimetria, o perfil das três amostras foi semelhante, independentemente do tipo e concentração do tensoativo não-iônico. Observou-se a presença de fase gel cristalina para os três sistemas, sendo aparentemente mais pronunciado para o SE-2. Tanto na análise microscópica quanto na difração a laser foram obtidos tamanho médio de partículas menor que 6,0 &#181;m. De acordo com os resultados da OCT, as partículas menores que 6,0 &#181;m não foram possíveis de serem conclusivamente observadas e aquelas maiores sugeriram ser a fase interna dos sistemas. / The physical, physicochemical and chemical attributes of the emulsified systems are influenced by the characteristics of their internal phase droplets, such as: concentration, size and morphology. Thus, the aims involved the physical and physicochemical characterization of emulsions obtained from the stearyl alcohol condensed with 21 mols ethylene oxide (EO) (steareth-21) and oleyl alcohol with 20 mols EO (oleth-20), as well as, the introduction of the optical coherence tomography (OCT) as the analytical technique tool to the determination of the particle size and morphological characterization of the emulsified systems. Three formulations were prepared, differing at the surfactant used, being the emulsified system SE-1 composed by 8.0% (p/p) of oleth-20, the SE-2 by 4.0% (p/p) of oleth-20 and 4.0% (p/p) steareth-21; and the SE-3 by 8.0% (p/p) steareth-21. The preliminary stability was evaluated, such as the ph value and the rheological and thermogravimetric profiles. The presence of the crystalline gel phase was determined from microscopy with polarized light and the droplet size through regular optical microscopy, laser diffraction and OCT. The samples did not present signs of instability throughout the centrifugation and thermal stress tests. The ph value was considered compatible to human skin (4.6 to 5.8). Systems represent the non-Newtonian pseudoplastic rheological behaviour. The SE-1 presented inferior apparent viscosity (223.53 mPa.s) and the hysteresis area (2238.38 Pa/s) statistically equal to SE-2 (2911.19 Pa/s); the SE-2 presented an average value of apparent viscosity (332.20 mPa.s) and, the SE-3, superior values to both parameters (636.40 mPa.s and 4248.97 Pa/s). The oscillating tests verified the elastic character predomination to the three systems. Throughout the thermogravimetry, the profile of the three samples was similar, independent from the kind and concentration of the non-ionic surfactant. The presence of the crystalline gel phase was identified at the three systems, being apparently more pronounced to the SE-2. Either at the microscopic analysis as well as at the laser diffraction were obtained an average size of the particles minor than 6.0 &#181;m. According to OCT results, the particles below 6.0 &#181;m were not possible to be identified and the major particles were suggested be the internal phase of the systems, however new studies should be performed.
10

Desenvolvimento e avaliação do processo de obtenção de emulsões múltiplas A/O/A em etapa única empregando óleo de canola e tensoativo não iônico derivado do óleo de rícino / Development and evaluation of the production process of multiple emulsions W/O/W by one step employing canola oil and derivative castor oil non ionic surfactant

Morais, Jacqueline Moreira de 04 June 2008 (has links)
As emulsões múltiplas mostram-se como veículos promissores em várias áreas das ciências cosmética e farmacêutica. O estudo do método de obtenção de emulsões múltiplas em etapa única é ferramenta útil para elucidação de seus aspectos físico-químicos e para viabilizar sua aplicação tecnológica. O objetivo da pesquisa foi desenvolver e caracterizar os aspectos físico-químicos do processo de emulsificação em etapa única, das emulsões múltiplas A/O/A obtidas e dos tensoativos empregados. Testes preliminares de estabilidade e avaliação do seu perfil de liberação (cafeína) foram realizados. Nanoemulsões foram inicialmente obtidas pela metodologia proposta, resultado de processo de emulsificação por inversão de fases. Suas características físico-químicas foram determinadas (valores de pH, potencial zeta e granulometria) e a influência de aditivos avaliada. Para o desenvolvimento da emulsão múltipla foram realizadas análises qualitativas e quantitativas das variáveis relevantes à composição (tipo de fase oleosa, de tensoativo hidrofílico, valor de EHL, emprego de diagrama ternário) e ao método de emulsificação (temperatura de aquecimento das fases e de emulsificação, ordem de adição e velocidade de agitação). Os estudos das propriedades físico-químicas dos tensoativos e do filme interfacial formado (cloud point, tensão superficial, CMC, reologia interfacial, reologia de fluxo e isotermas de Langmuir) foram primordiais para compreensão dos fenômenos envolvidos e relevantes ao processo de emulsificação proposto. As emulsões múltiplas foram caracterizadas quanto aos aspectos macro e microscópico, granulometria, valores de pH, potencial zeta, viscosidade relativa, perfil reológico e influência da adição de macromoléculas. A temperatura de manipulação e de emulsificação (78±2grausC) foram parâmetros fundamentais para obtenção destes sistemas em etapa única. Seus aspectos macro e microscópico foram extremamente dependentes da temperatura de emulsificação. Os resultados indicam glóbulos múltiplos consideravelmente menores do que os relatados pela literatura. Foi possível observar, no intervalo de temperatura considerado crítico para o processo, valores de tensão superficial/interfacial mínimos. Os resultados de elasticidade superficial sugerem que o comportamento das moléculas de tensoativos, em associação ou não, foi marcadamente influenciado pela temperatura e que o aumento do número de moléculas do tensoativo hidrofólico na superfície foi desfavorável as interações intramoleculares. A isoterma para os tensoativos em associação e em função da temperatura exibiu marcante inflexão para a faixa de temperatura crítica. Este comportamento indica uma dramática alteração na microestrutura do filme interfacial. O processo de encapsulação foi considerado eficiente. Os resultados obtidos indicam que, no atual estágio de desenvolvimento, não foi possível definir um perfil de liberação para a emulsão múltipla em análise. O método de emulsificação escolhido permitiu a obtenção de sistema múltiplo em etapa única, determinado pelas características físico-químicas dos tensoativos empregados, em especial do tensoativo hidrofílico derivado do óleo de rícino e do processo proposto. A formação de emulsões múltiplas anormais não ocasionais ou momentâneas sugere uma combinação dos processos de inversão de fases transicional, influência do emprego de tensoativos não-iônicos etoxilados, e catastrófica, influência da razão entre o volume da fase dispersa e dispersante. As emulsões múltiplas obtidas apresentaram difícil reprodutibilidade microestrutural; entretanto podem ser consideradas estáveis frente às metodologias de avaliação e análise empregadas. / Multiple emulsions are potential vehicles not only for the cosmetic science, but also for the pharmaceutical science. Study the manufacture process of multiple emulsions by one step is a useful tool for understanding their physical-chemistry aspects and making their technological application practicable as well. The goals of this research were to development and characterize the physical chemistry features of the emulsification process by one step, the W/O/W multiple emulsions produced and the surfactants employed. Preliminary stability tests and evaluation of the release profile (caffeine) were carried out. Initially, nano-emulsions were produced by the proposed methodology, resulting from phase inversion emulsification process. Their physical chemistry aspects (pH and zeta potential values and size distribution) and electrolytes addition influence were evaluated. In order to develop the multiple emulsions, noteworthy qualitative and quantitative variables related to the composition (oil phase and hydrophilic surfactant types, HLB values, phase diagram) and to emulsification process (heating and emulsification temperatures, addition order and agitation speed) were analyzed. Analyses of the physical chemistry aspects of the surfactants in solution and their interfacial film (cloud point, surface tension, CMC, interfacial and flux rheology, and Langmuir isotherms) were essential in order to understand the phenomena related to proposed emulsification process. Multiple emulsion analyses (macroscopic, microscopic, size distribution, pH and zeta potential values, relative viscosity, rheological profile and macromolecule addition influence) were carried out. Production and emulsification temperatures (78±2grausC) were fundamental parameters in order to obtain multiple droplets by one step. Their macro and microscopic aspects were completely conditioned by the emulsification temperature. The sizes of the multiple droplets obtained were significantly smaller than those reported in the literature. For the critical temperature range, the minimum surface tension values were reached. Surface elasticity results suggest that the behavior of the surfactant molecules, in association or not, was fundamentally influenced by the temperature. Increasing surfactant molecule moieties on the surface, the intra molecular interactions were misplaced. The Langmuir isotherm as a function of the temperature demonstrated distinctive behavior for the critical temperature range, where the transition phase into solid state and soon afterwards some collapse could be observed. This phenomenon indicated some dramatic alteration of the surface film microstructure. The encapsulation process was regarded as efficient. The release profile studies demonstrated that the dispersed system in analysis was not ready yet for this research stage. The proposed emulsification process was able to produce multiple droplets by one step; moreover this result presented direct influence of the surfactant physical chemistry features, particularly the hydrophilic one, castor oil derivate, and of the methodology employed. The abnormal, non-occasional and non-transitory, multiple emulsion formation suggest a combination of transitional (ethoxylated non ionic surfactant influence), and catastrophic (dispersed/dispersant ratio influence) phase inversion processes. The obtained multiple emulsions presents microstructure aspects were not easily reproducible; however those were regarded stable for the analysis methodology employed.

Page generated in 0.0975 seconds