1 |
Nanostructured Polysulfone-Based Block Copolymer MembranesXie, Yihui 05 1900 (has links)
The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now.
Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability.
Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated reversible-deactivation radical polymerization.
Finally, phase inversion membranes were prepared from polytriazole-polysulfone random copolymers, which were obtained by “clicking” 1,2,3-triazole ring substituents bearing OH groups onto the polysulfone backbone via copperI-catalyzed azide-alkyne cycloaddition. The increased hydrophilicity of membranes imparted the higher water permeability and fouling resistance to the ultrafiltration membranes. Polytriazole-b-polysulfone-b-polytriazole triblock copolymer was synthesized by RAFT and post-polymerization click modification. Hydrogen bond-mediated self-assembly induced the formation of a nanostructured polytriazole-b-polysulfone-b-polytriazole / poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) blend membrane with a 1: 1 stoichiometric ratio of triazole and acid. String-like fused micelles with polytriazole/poly(acrylic acid) corona were present on the membrane surface, after immersion in a coagulation bath of copper2+ aqueous solution.
|
2 |
Phase inversion temperature emulsification : from batch to continuous processMarino, Helene January 2010 (has links)
No description available.
|
3 |
Effects of Mixed Stabilizers (Nanoparticles and Surfactant) on Phase Inversion and Stability of EmulsionsMalhotra, Varun January 2009 (has links)
Immiscible dispersions of oil and water are encountered in many industries such as food, pharmaceuticals, and petroleum. Phase inversion is a key phenomenon that takes place in such systems whereby the dispersed phase and the continuous phase invert spontaneously. Stabilizers such as surfactants or solid nanoparticles have been used in the past to improve the stability of emulsions. However, the combined effects of surfactants and nanoparticles on phase inversion and stability of oil and water emulsions have not been studied.
This study investigates the synergistic effects of silica nanoparticles (of varying hydrophobicities) and non-ionic surfactant on phase inversion of water-in-oil emulsion to oil-in-water emulsion. The effect of oil viscosity on phase inversion phenomenon is also studied. Stabilizers were initially dispersed in the oil phase with the help of a homogenizer. The water concentration of the system was gradually increased while maintaining the mixing. Online conductivity measurements were carried out to obtain the phase inversion point. Experimental results on the effects of pure stabilizers (either silica nanoparticles or surfactant) and mixed stabilizers (combined silica nanoparticles and surfactant) on phase inversion of emulsions are presented. The stability of these emulsions is also investigated.
From the results obtained in this study it is clear that catastrophic phase inversion phenomenon and stability of water-in-oil emulsions can be controlled with the help of different stabilizers. In order to extend the critical dispersed phase volume fraction at which phase inversion occurs surfactant type stabilizer was found to be more effective than solid nanoparticles. On the other hand, emulsion stability was mainly dominated by solid nanoparticles. The hybrid of the two stabilizers and its effect on phase inversion and stability are discussed in the thesis.
|
4 |
Effects of Mixed Stabilizers (Nanoparticles and Surfactant) on Phase Inversion and Stability of EmulsionsMalhotra, Varun January 2009 (has links)
Immiscible dispersions of oil and water are encountered in many industries such as food, pharmaceuticals, and petroleum. Phase inversion is a key phenomenon that takes place in such systems whereby the dispersed phase and the continuous phase invert spontaneously. Stabilizers such as surfactants or solid nanoparticles have been used in the past to improve the stability of emulsions. However, the combined effects of surfactants and nanoparticles on phase inversion and stability of oil and water emulsions have not been studied.
This study investigates the synergistic effects of silica nanoparticles (of varying hydrophobicities) and non-ionic surfactant on phase inversion of water-in-oil emulsion to oil-in-water emulsion. The effect of oil viscosity on phase inversion phenomenon is also studied. Stabilizers were initially dispersed in the oil phase with the help of a homogenizer. The water concentration of the system was gradually increased while maintaining the mixing. Online conductivity measurements were carried out to obtain the phase inversion point. Experimental results on the effects of pure stabilizers (either silica nanoparticles or surfactant) and mixed stabilizers (combined silica nanoparticles and surfactant) on phase inversion of emulsions are presented. The stability of these emulsions is also investigated.
From the results obtained in this study it is clear that catastrophic phase inversion phenomenon and stability of water-in-oil emulsions can be controlled with the help of different stabilizers. In order to extend the critical dispersed phase volume fraction at which phase inversion occurs surfactant type stabilizer was found to be more effective than solid nanoparticles. On the other hand, emulsion stability was mainly dominated by solid nanoparticles. The hybrid of the two stabilizers and its effect on phase inversion and stability are discussed in the thesis.
|
5 |
Solvent-Free Extrusion Emulsification Inside a Twin-Screw ExtruderIvancic, Tomislav January 2019 (has links)
Solvent-free extrusion emulsification (SFEE) is a novel emulsification technology that operates without solvent to produce sub-micron sized particles (100–200 nm) using a twin-screw extruder (TSE) with high viscosity polymers (up to 600 Pa.s has been tested to date) and only water as the liquid medium. Surfactants have always been known to play a key role in the success of the SFEE process, however very little work has been done to investigate the mechanisms by which they operate, along with isolating the region of the process to which they play the most vital role.
The first part of this thesis focused on an investigation into how different surface-active properties impacted the mechanism of SFEE. Three ionic (SDBS, Unicid 350, Calfax DB-45) and three non-ionic surfactants (Igepal CO-890, Brij 58, Synperonic F-108), each with differing surface-active properties were tested in solvent emulsification (SE) prior to their evaluation in SFEE. Synperonic F-108 was the only surfactant found unsuccessful in the SE process, and was therefore disregarded prior to SFEE testing. Of the three ionic surfactants, SDBS and Calfax were the only ones found to successfully create a stable emulsion in SFEE; the latter species doing so with 50% reduced molar loading. Igepal and Brij were found to produce very low amounts of emulsified material (5-25% of the total solids mass), requiring molar loadings that greatly exceed those of SDBS and Calfax to do so. Particles generated by both SE and SFEE were tested at extreme operating conditions to compare their relative stabilities, and were found to experience similar stability behaviours. This result reinforces previous findings that the dispersion stage controls the SFEE technique.
The second part of this thesis continued the investigation on the use of non-ionics in SFEE, with a focus on the impact of their molecular structure on the overall process. Non-ionic surfactants with varying hydrophilic end group chain lengths were tested in SFEE, and it was determined that the optimal hydrophilic chain length was between 10–12 ethoxy units, where shorter chains resulted in coarse particle generation. The structure of the hydrophobic end group was tested as well, and through experimentation it was determined that a branched end group structure was slightly more beneficial than a linear end group to emulsion stabilization. As seen in the first part of this thesis, none of the new selection of non-ionic surfactants were capable of inducing sufficient phase inversion to result in a high percentage of emulsion leaving the extruder. The most promising ionic surfactant, Calfax DB-45, was combined with various promising non-ionic surfactants to create binary surfactant mixtures, and were tested in SFEE. Initial results yielded the most promising blend as Calfax/Igepal CA-630. After manipulation of both molar ratio and total surfactant loading, it was determined that a minimum Calfax loading of 0.06 mmol/g resin was required in the blend to achieve a stable 100 – 200 nm emulsion in both SE and SFEE processes, regardless of non-ionic concentration. The benefits of adding a non-ionic surfactant in the blend were seen with the substantial reduction of Calfax entrapped in the final latex particles, apparent by the distinct decrease in overall particle charge. A mini-study examining the impacts of increasing the viscosity of the water phase by hydrocolloid addition for the dilution stage has shown that positive changes to emulsion properties can be seen by this approach, but further experimentation is required before concrete conclusions can be made. / Thesis / Master of Applied Science (MASc) / The creation of nanoparticles has been a growing area of research in recent years, with numerous different means of generation being developed. Extruders have seldom been used for the generation of nanoparticles due to issues related to controlling generated particle characteristics. Previous work has shown that twin-screw extruders are capable of generating 100–200 nm particles, but the process has shown minimal robustness to variations in operating conditions. The aim of this study has been to continue the work of nanoparticle generation within a twin-screw extruder, with a specific focus on the impacts that special soap-like particles (surfactants) have on the process. Surfactants are special particles consisting of both a hydrophilic (“water-loving”) and hydrophobic (“water-hating”) end group that allows multiple substances to combine on a chemical level. Variations in the molecular structure and electronic charge of these surfactants, along with blends of different types of surfactants have been tested to gain a better understanding of their role in the process, and hopefully increase the overall robustness of the process. Overall, it was determined that surfactants with a negative charge were more successful in creating polyester latex particles than ones with a neutral molecular structure. The blending of a charged and neutral surfactant has been shown in this study to not only be successful in generating particles of desired size, but have also shown the ability to reduce the overall charge of the final latex particles.
|
6 |
Hydrophobic-Hydrophilic Separation Process for the Recovery of Ultrafine ParticlesLi, Biao 20 November 2019 (has links)
The demands for copper and rare earth elements (REEs) in the U.S. will keep rising due to their applications in green energy technologies. Meanwhile, copper production in the U.S. has been declining over the past five years due to the depletion of high-grade ore deposits. The situation for REEs is worse; there is no domestic supply chain of REEs in the U.S. since the demise of Molycorp, Inc. in 2016. Studies have shown that the rejected materials from copper and coal processing plants contain significant amounts of valuable metals. As such, this rejected material can be considered as potential secondary sources for extracting copper and REEs, which may help combat future supply risks for the supply of copper and REEs in the U.S. However, the valuable mineral particles in these resources are ultrafine in size, which poses considerable challenges to the most widely used fine particle beneficiation technique, i.e., froth flotation. A novel technology called the Hydrophobic-Hydrophilic Separation (HHS) process, developed at Virginia Tech, has been successfully applied to recover fine coal in previous research. The results of research into the HHS process showed that the process has no lower particle size limit, similar to solvent extraction. Therefore, the primary objective of this research is to explore the feasibility of using the new process to recover ultrafine particles of coal, copper minerals, and rare earth minerals (REMs) associated with coal byproducts.
In the present work, a series of laboratory-scale oil agglomeration and HHS tests have been carried out on coal with the objectives of assisting the HHS tests in pilot-scale, and the scale-up of the process. The knowledge gained from this study was successfully applied to solving the problems encountered in the pilot-scale tests. Additionally, a new and more efficient equipment known as the Morganizer has been designed and constructed to break up the agglomerates in oil phase as a means to remove entrained gangue minerals and water. The effectiveness of the new Morganizers has been demonstrated in laboratory-scale HHS tests, which may potentially result in the reduction of capital costs in commercializing the HHS process. Furthermore, the prospect of using the HHS process for processing high-sulfur coals has been explored. The results of this study showed that the HHS process can be used to increase the production of cleaner coal from waste streams.
Application of the HHS process was further extended to recover the micron-sized REMs from a thickener underflow sample from the LW coal preparation plant, Kentucky. The results showed that the HHS process was far superior to the forced-air flotation process. In one test conducted during the earlier stages of the present study, a concentrate assaying 17,590 ppm total REEs was obtained from a 300 ppm feed. In this test, the Morganizer was not used to upgrade the rougher concentrate due to the lack of proper understanding of the fundamental mechanisms involved in converting oil-in-water (o/w) Pickering emulsions to water-in-oil (w/o) Pickering emulsions. Many of the studies has, therefore, been focused on the studies of phase inversion mechanisms. The results showed that phase inversion requires that i) the oil contact angles (θo) of the particles be increased above 90o, ii) the phase volume of oil (ϕo) be increased, and iii) the o/w emulsion be subjected to a high-shear agitation. It has been found that the first criterion can be readily met by using a hydrophobicity-enhancing agent. These findings were applied to produce high-grade REM concentrates from an artificial mixture of micron-sized monazite and silica.
Based on the improved understanding of phase inversion, a modified HHS process has been developed to recover ultrafine particles of copper minerals. After successfully demonstrating the efficacy and effectiveness of this process on a series of artificial copper ore samples, the modified HHS process was used to produce high-grade copper concentrates from a series of cleaner scavenger tails obtained from operating plants. / Doctor of Philosophy / Recovery and dewatering of ultrafine particles have been the major challenges in the minerals and coal industries. Based on the thermodynamic advantage that oil droplets form contact angles about twice as large as those obtainable with air bubbles, a novel separation technology called the hydrophobic-hydrophilic separation (HHS) process was developed at Virginia Tech to address this issues. The research into the HHS process previously was only conducted on the recovery of ultrafine coal particles; also, the fundamental aspects of the HHS process were not fully understood, particularly the mechanisms of phase inversion of oil-in-water emulsions to water-in-oil emulsions. As a follow-up to the previous studies, emulsification tests have been conducted using ultrafine silica and chalcopyrite particles as emulsifiers, and the results showed that phase inversion requires high contact angles, high phase volumes, and high-shear agitation. These findings were applied to improve the HHS process for the recovery of ultrafine particles of coal, copper minerals, and rare earth minerals (REMs). The results obtained in the present work show that the HHS process can be used to efficiently recover and dewater fine particles without no lower particle size limits.
|
7 |
Structuration and rheology of Pickering emulsions by the interaction of particles with different degrees of hydrophobicity / Structuration et rhéologie d'émulsions de Pickering par l'interaction de particules avec différent degrés d'hydrophobicitéBarros, Frederico Macedo Fernandes 20 September 2016 (has links)
Les émulsions de Pickering ont suscité un intérêt croissant dans de nombreux domaines de la recherche en raison de leur grande stabilité et versatilité. Une attention particulière a été accordée à la fabrication des systèmes complexes et originaux qui peuvent être obtenus avec différentes particules. Cette étude a consisté dans l'analyse des différents paramètres physico-chimiques des particules, des milieux liquides et des systèmes dispersées, et leur relation avec le comportement mécanique et la structure des émulsions afin de prédire et de moduler les caractéristiques de ces dernières. Nous avons étudié plus particulièrement pour la première fois, le diagramme de phase concernant les inversions de phase du type catastrophique et transitionnelle des émulsions de Pickering. Nous avons utilisé des particules de silice avec des structures et hydrophobicités différentes. En particulier, nous avons montré que le mélange de particules de différente hydrophobicités peut moduler finement l'inversion de phase aussi bien que les propriétés rhéologiques et structurales des émulsions. La fabrication de membranes à partir des émulsions de Pickering précédentes a été proposée comme un exemple de l'utilisation de ces systèmes modèles pour la conception de matériaux complexes. / Pickering emulsions have gained interest in many fields of research due their properties like higher stability and versatility. Special attention has been given to the processing of complex and original systems which can be obtained by using different particles. This study consists in the analysis of the different physicochemical parameters of particles, liquid media as well dispersion systems, and their relationship with emulsions structural and mechanical behavior in order to predict and modulate the emulsions characteristics. We studied extensively for the first time the phase diagram of catastrophic and transitional phase inversion of Pickering emulsions. We used silica particles with different structure and hydrophobicity. In particular we showed that mixing particles with different hydrophobicity can finely modulate the phase inversion as well the rheological and structural properties of the emulsions. The manufacturing of emulsified membranes based on previous Pickering emulsions was proposed as an example of the use of these systems as templates for the design of complex materials.
|
8 |
Submicron Polymer Emulsion Inside Twin Screw ExtruderArefi, Ahmad January 2023 (has links)
Solvent-free extrusion emulsification (SFEE) is a recently developed process for producing
submicron particles with high viscosity polymers inside a twin-screw extruder without the use of hazardous solvents. Its dependency on a catastrophic phase inversion makes the process knowingly sensitive to a variety of formulation and operational variables, causing a narrow window of production. The purpose of this thesis was to investigate and improve process stability as well as widening operational window. Transient effects of the start-up procedure was investigated by considering the process stability and particle size distribution. The transient sensitivity corresponded to the residency of material in the dispersion zone. When a sub-optimal water/surfactant fraction was allowed to produce an undesired polymer-water (thick lamella) morphology, this morphology continued to persist until the critical first half of the dispersion zone was purged of existing mass. Lot to lot variability of polyester resin was used to investigate the sensitivities of the SFEE process more deeply to better understand the mechanism involved. In this case, acid number was shown to have a significant effect on the initial amount of water needed in the dispersion zone for phase inversion, resulting in an emulsification boundary dependent on the resin acid number. In fact, a significant correlation was found between the acidic end groups of the resin and the maximum amount of water content that could be used in the dispersion zone. The effect of feed rate, screw speed, dispersion length, and surfactant concentration were studied for their individual influence on widening the emulsification boundary. The most significant improvement was observed by applying a longer dispersion length or lower feed rate because both significantly increase the residence time. The effect of residence time on the emulsification boundary was attributed to the total strain imposed on the polymer/water mixture which was related to interfacial growth in the dispersion zone. / Dissertation / Doctor of Philosophy (PhD)
|
9 |
A study of gas lift on oil/water flow in vertical risersBrini Ahmed, Salem Kalifa January 2014 (has links)
Gas lift is a means of enhancing oil recovery from hydrocarbon reservoirs. Gas injected at the production riser base reduces the gravity component of the pressure drop and thereby, increases the supply of oil from the reservoir. Also, gas injection at the base of a riser helps to mitigate slugging and thus, improving the performance of the topside facility. In order to improve the efficiency of the gas lifting technique, a good understanding of the characteristics of gas-liquid multiphase flow in vertical pipes is very important. In this study, experiments of gas/liquid (air/water) two-phase flows, liquid/liquid of oil/water two-phase flows and gas/liquid/liquid (air/oil/water) three-phase flows were conducted in a 10.5 m high 52 mm ID vertical riser. These experiments were performed at liquid and gas superficial velocities ranging from 0.25 to 2 m/s and ~0.1 to ~6.30 m/s, respectively. Dielectric oil and tap water were used as test fluids. Instruments such as Coriolis mass flow meter, single beam gamma densitometer and wire-mesh sensor (WMS) were employed for investigating the flow characteristics. For the experiments of gas/liquid (air/water) two-phase flow, flow patterns of Bubbly, slug, churn flow regimes and transition regions were identified under the experimental conditions. Also, for flow pattern identification and void fraction measurements, the capacitance WMS results are consistent with those obtained simultaneously by the gamma densitometer. Generally, the total pressure gradient along the vertical riser has shown a significant decrease as the injected gas superficial velocity increased. In addition, the rate of decrease in total pressure gradient at the lower injected gas superficial velocities was found to be higher than that for higher gas superficial velocities. The frictional pressure gradient was also found to increase as the injected gas superficial velocity increased. For oil-water experiments, mixture density and total pressure gradient across the riser were found to increase with increasing water cut (ranging between 0 - 100%) and/or mixture superficial velocity. Phase slip between the oil and water was calculated and found to be significant at lower throughputs of 0.25 and 0.5 m/s. The phase inversion point always takes place at a point of input water cut of 42% when the experiments started from pure oil to water, and at an input water cut of 45% when the experiment’s route started from water to pure oil. The phase inversion point was accompanied by a peak increase of pressure gradient, particularly at higher oil-water mixture superficial velocities of 1, 1.5 and 2 m/s. The effects of air injection rates on the fluid flow characteristics were studied by emphasizing the total pressure gradient behaviour and identifying the flow pattern by analysing the output signals from gamma and WMS in air/oil/water experiments. Generally, riser base gas injection does not affect the water cut at the phase inversion point. However, a slight shift forward for the identified phase inversion point was found at highest flow rates of injected gas where the flow patterns were indicated as churn to annular flow. In terms of pressure gradient, the gas lifting efficiency (lowering pressure gradient) shows greater improvement after the phase inversion point (higher water cuts) than before and also at the inversion point. Also, it was found that the measured mean void fraction reaches its lowest value at the phase inversion point. These void fraction results were found to be consistent with previously published results.
|
10 |
Produção por método da temperatura de inversão de fases, estudo de estabilidade físico-química, digestabilidade in vitro e citotoxicidade de nanopartículas lipídicas sólidas encapsulando beta-caroteno / Production by phase inversion temperature method, study of physicochemical stability, in vitro digestibility and cytotoxicity of beta-carotene load solid lipid nanoparticleGomes, Graziela Veiga de Lara 12 February 2015 (has links)
Nanopartículas lipídicas sólidas (SLN) são sistemas coloidais nanoparticulados muito utilizados para encapsulação de substâncias hidrofóbicas, com o intuito de proteger e aumentar a sua biodisponibilidade. Tais sistemas podem ser produzidos por métodos de baixa energia, como a temperatura de inversão de fase (PIT), a qual é baseada na mudança de solubilidade do tensoativo não iônico polietoxilados com a temperatura. O estudo do comportamento de tais sistemas durante a passagem pelo trato gastrointestinal torna-se interessante, caso deseje-se incorpora-los em matrizes alimentícias. Os modelos in vitro dinâmicos têm sido desenvolvidos para simular mais efetivamente os atributos que ocorrem in vivo, e dentre eles o mais conhecido é o sistema TIM (TNO intestinal model), que simula os principais eventos que ocorrem no lúmen do intestino delgado. Outro parâmetro importante a ser analisado, em nanopartículas passíveis de serem ingeridas, é a citotoxicidade, que pode ser avaliado através do emprego de culturas celulares intestinais e epiteliais. O presente trabalho de doutorado teve como objetivo a utilização de manteiga de cupuaçu e manteiga de murumuru para encapsulação do beta-caroteno em nanopartículas lipídicas sólidas produzidas pelo método PIT, e o estudo de sua citotoxicidade e digestibilidade in vitro dinâmica. Os tensoativos utilizados foram o Cremophor RH 40 e o Span 80, e os sistemas foram produzidos na presença e na ausência de alfa-tocoferol. De maneira geral pode-se dizer que as nanopartículas apresentaram diâmetro médio ao redor de 35 nm com polidispersidade 0,2 e permaneceram estáveis por um período de 4 meses. Os sistemas produzidos com manteiga de murumuru preservaram melhor o beta-caroteno encapsulado e o alfa-tocoferol agiu como um antioxidante na preservação do bioativo. As nanopartículas apresentaram estabilidade física frente às diferentes condições de stress, exceto quando foram expostas em concentrações salinas muito altas e pH básico. No que diz respeito à digestibilidade, as nanopartículas permaneceram estáveis no estômago e começaram a desestabilizar no duodeno; a biodisponibilidade total do beta-caroteno foi de 50 e 49% para respectivamente as partículas de manteiga de murumuru e manteiga de cupuaçu; a lipólise foi de 51% para as nanopartículas de manteiga de cupuaçu e de 49,8% para as nanopartícula de murumuru. Em relação aos estudos em linhagem de células in vitro e a avaliação da toxicidade, pode-se dizer que as linhagens de HEPG-2 apresentaram maior viabilidade celular do que as linhagens de CaCo-2 e a morte celular começou a ser mais pronunciada na diluição de 11,38µg/ml para as células de HEPG-2 e na diluição de 5,69 µg/ml para as células de CaCo-2, portanto, caso se deseje aplicá-las em matrizes alimentícias, é aconselhável respeitar essas concentrações. Além do mais, os resultados mostram que as nanopartículas avaliadas tem um potencial muito bom para encapsular compostos bioativos lipossolúveis e se mostraram um bom veiculo para serem empregadas em alimentos. / Solid lipid nanoparticles are colloidal delivery systems used for encapsulation of hydrophobic substances, with the aim to protect and increase bioavailability. Such systems could be produced by low energy methods, like phase inversion temperature (PIT) which is based in the change of solubility nonionic polyethoxylated surfactants with temperature. In order to incorporate these systems in foods, it is important studying their behavior under gastrointestinal tract conditions. The in vitro dynamic models had been developed to simulate more effectively the properties that occur in vivo, between them the TIM system (TNO intestinal model) is one of the most known, which simulates the most important events that occur in the lumen of the small intestine. Other important parameter in nanoparticles that can be ingested is the cytotoxicity that can be evaluated using intestinal and epithelial cell cultures. This doctoral work aimed to use cupuaçu butter and murumuru butter to encapsulate beta-carotene in solid lipid nanoparticles produced by the PIT method, moreover the study of these particles cytotoxicity and digestibility in dynamic in vitro systems. The surfactants used were Chemophor RH 40 and Span 80, and the systems were produced in the presence and absence of alpha-tocopherol. Generally one can say that these nanoparticles present average diameter around 35 nm with polydispersity 0.2 and remain stable during 4 months. The systems based with murumuru butter showed better preservation of the beta-carotene encapsulated and alpha-tocopherol acted like an antioxidant in the bioactive preservation. The nanoparticles presented physical stability faced various stress conditions, with the exception of very high saline concentrations and basic pH. Regarding the digestibility, the nanoparticles remain stable in the stomach and start to destabilize in the duodenum; the total bioavailability of beta-carotene were 50 and 49% to the murumuru butter and cupuaçu butter, respectively; the lipolysis were 51% to the nanoparticles based in cupuaçu butter and 49.8% to the murumuru based nanoparticles. Regarding the studies of in vitro cellular uptake and toxicity one can say that the HEPG-2 present bigger cellular viability than the Caco-2 and the cellular death begin with dilution of 11,38µg/ml for cells of HEPG-2 and with dilution of 5,69 µg/ml for cells of CaCo-2, so if one desire to apply in food matrices it is advisable to respect these concentrations. Furthermore, the results showed that the tested nanoparticles had a very good potential to encapsulate bioactive liposoluble components and are a good way to be applied in food matrices.
|
Page generated in 0.0787 seconds