• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 20
  • 1
  • Tagged with
  • 46
  • 27
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Aspects spatiaux de l'intrication en amplification paramétrique : paradoxe Einstein-Podolsky-Rosen dans les images jumelles et expérience de Hong-Ou-Mandel. / Spatial aspects of entanglement in parametric amplification : Enstein-Podolsky-Rosen paradox in twin images and Hong-Ou-Mandel experiment

Moreau, Paul-Antoine 09 April 2015 (has links)
Nous étudions les aspects spatiaux de l’intrication, d’une part dans le cadre de la génération d’états intriqués de haute dimensionnalité par amplification paramétrique optique, et d’autre part dans le cadre des expériences dites de Hong- Ou- Mandel. La première partie de cette étude s’attache à démontrer l’existence d’un paradoxe Einstein-Podolsky-Rosen (EPR) dans le comportement de la lumière de fluorescence générée par un amplificateur paramétrique optique. Le paradoxe EPR estétudié dans le contexte de sa formulation originelle, c’est-à-dire dans le domaine des positions et impulsions. La détection des photons intriqués est assurée à l’aide de caméras particulières,appelées caméras EMCCD, qui présentent la propriété de pouvoir atteindre un régime de comptage de photons. En prenant des images des faisceaux de fluorescence, nous montrons l’existence d’un paradoxe EPR de haut degré. La seconde partie de cette étude concerne les expérience sde Hong- Ou- Mandel et cherche à démontrer, par l’utilisation de simulations, la possibilité d’obtenir une coalescence complète des paires de photons sur toute l’extension spatiale de faisceaux de fluorescence paramétrique. Partant du constat du comportement non-local qui apparaît clairement au cours de cette étude, nous démontrons la possibilité d’ établir une inégalité de Bell pour ce phénomène d’interférence à deux photons. Nous montrons par ailleurs que le formalisme quantique prévoit la violation de cette inégalité de Bell par un état construit en filtrant l’ état intriqué écrit par EPR en 1935. / Spatial aspects of entanglement in parametric amplification : Einstein-Podolsky-Rosen paradox intwin images and Hong-Ou-Mandel experiment.We study spatial aspects of entanglement, first in the context of spontaneous down converted lightexhibiting high dimensional entanglement, and in a second step through a simulated Hong-Ou-Mandel experiment. The first part of this study demonstrate an Einstein-Podolsky-Rosen paradox inits original formulation, e.g. in the context of position and momentum correlations. We detect photonsby mean of special cameras including a gain register, called EMCCD cameras, able to count photonarrival on each pixel. By taking direct images of the fluorescence beams, we demonstrate a strongdegree of EPR paradox. The second part of this study aim to demonstrate, by mean of simulations,the possibility to obtain a full field coalescence of fluorescence photons, due to the Hong-Ou-Mandeleffect. Starting from the observation that the HOM effect exhibits a nonlocal behaviour, we establisha Bell inequality on the two photons interference phenomenon itself. We then show that the original1935 EPR state is able to violate this Bell inequality
32

Microscopic nonlocal potentials for the study of scattering observables of nucleons within the coupled channel framemork / Potentiels microscopiques non locaux pour l'étude des observables de diffusion de nucléons dans le formalisme des voies couplées

Nasri, Amine 14 September 2018 (has links)
Une bonne compréhension et une bonne capacité de prédiction de la section efficace de diffusion de neutron est essentielle à un grand nombre de technologies nucléaires, parmi lesquelles les réacteurs à fission. Pour les noyaux déformés, le calcul des observables de diffusion de nucléon pour la voie élastique et les premiers états excités de basse énergie requiert l'utilisation de calcul en voies couplées. Des potentiels optique et de transition phénoménologiques locaux sont le plus couramment utilisés dans les analyses par voies couplées, mais leur précision en dehors de leur domaine d'ajustement est imprévisible. Des approches microscopiques sont en cours de développement pour augmenter les capacités prédictives et résoudre les problèmes d'extrapolation. Un potentiel obtenu microscopiquement est non local, et de récentes études ont souligné l'importance de traiter explicitement cette non localité sans passer par une procédure de localisation. Notre but dans ce travail est d'étudier dans une approche microscopique, sans paramètre ajustable, l'impact de la non localité des potentiels sur les observables de diffusion de nucléon sur noyau cible. Pour ce faire, nous étudions la diffusion de neutron avec la matrice G de Melbourne qui représente l'interaction entre le projectile et un nucléon de la cible, et nous utilisons la RPA pour décrire la structure de la cible dans le cadre de nos premières applications sur le ⁹⁰Zr. Pour pouvoir étudier aussi des noyaux déformés, nous menons notre étude dans le cadre des voies couplées. La première partie de ce document contient la dérivation, faite dans un cadre unique et cohérent, des équations couplées pour la diffusion de nucléons et des potentiels microscopiques obtenues avec la matrice G de Melbourne et une description de la cible via la RPA. La deuxième partie est dédiée à la présentation des codes que nous avons développés durant ce projet de thèse : MINOLOP pour le calcul de potentiels microscopiques à partir de la matrice G de Melbourne et d'informations de structure données sous la forme d'une densité à 1 corps, et ECANOL pour la résolution des équations en voies couplées avec des potentiels non locaux en entrée. Enfin, nous présentons nos premières applications basées sur ces deux codes : l'étude d'émission de pré-équilibre due à des excitations à 2 phonons dans le ⁹⁰Zr. / A good understanding and prediction capacity of neutron scattering cross sections is crucial to many nuclear technologies, among which all kinds of reactors based on fission process. For deformed nuclei, the computation of scattering observables for the elastic channel and the first, low-lying excited states requires coupled channel calculations. Local, phenomenological optical and macroscopic transition potentials are the most commonly used in coupled channel analyses, but their accuracy outside of their fitting range remains unpredictable. Microscopic approaches are being developed in order to improve prediction power and solve the extrapolation issue. Potentials obtained microscopically are nonlocal, and recent studies have emphasized the importance of treating explicitly this nonlocality, without using a localization procedure. Our goal in the present work is to study in a quantum framework with no adjustable parameter, the impact of the nonlocality of potentials on scattering observables of nucleon-nucleus reactions. To achieve this we study neutron scattering with the Melbourne G matrix, which represents the interaction between the projectile and one nucleon of the target, and we describe the target’s structure using the RPA for our first applications to ⁹⁰Zr. In order to be able to study also deformed nuclei, we do our study in the coupled channel framework. The first part of this paper is dedicated to the derivation in a unique, consistent scope of coupled equations for nucleon-nucleus scattering and of the potentials obtained with the Melbourne G matrix and RPA structure input. Secondly, we describe the codes which we wrote during this Ph.D. project: MINOLOP for the computation of microscopic potentials using the Melbourne G matrix and structure inputs given in terms of a 1-body density, and ECANOL for the resolution of coupled channel equations using nonlocal potentials as input. Eventually, we present our first applications using these two codes to study pre-equilibrium emissions due to 2-phonon excitations in ⁹⁰Zr.
33

Photonique quantique expérimentale : cohérence, non localité et cryptographie / Experimental quantum photonics : coherence, nonlocality and cryptography

Aktas, Djeylan 14 December 2016 (has links)
Cette thèse s'articule autour de l'étude de la cohérence de la lumière produite à partir de sources de paires de photons intriqués et de micro-lasers. Nous avons produit et manipulé des états photoniques intriqués, et conduit des investigations à la fois fondamentales et appliquées. Les deux études menées sur les aspects fondamentaux de la non localité avaient pour but de relaxer partiellement deux contraintes sur lesquelles s'appuie l'inégalité de Bell standard en vue d'applications à la cryptographie quantique. Ainsi, en collaboration avec l'Université de Genève, nous avons redéfini la notion de localité en prenant en compte les influences sur les mesures de corrélations des choix des configurations expérimentales et d'une efficacité globale de détection limitée. Cela a permis de définir des inégalités de Bell généralisées et les violations expérimentales qui en découlent permettent d'attester de la non localité des états quantiques observés. Nous avons aussi étudié et mis en place une solution expérimentale autorisant l'émission de photons intriqués dans des pairs de canaux télécoms pour la cryptographie quantique. Nous avons montré la préservation de l'intrication sur 150 km et obtenu des débits records en comparaison avec les réalisations similaires. Enfin, nous avons étudié les propriétés de l’émission de lasers à semi-conducteurs aux dimensions réduites. L’émission de ces composants microscopiques s'accompagne de grandes fluctuations en intensité lorsque ceux-ci sont pompés en-dessous du seuil laser. Cette étude a permis de mieux comprendre comment se construit la cohérence laser dans ces systèmes. / In this thesis we study the coherence of light emitted by entangled photon-pair sources and micro-lasers. We have generated an manipulated entangled photonic states and investigated both fundamental (non locality) and applied (quantum cryptography) research directions. The objective of two fundamental studies on non locality was to partially relax the strong assumptions on which standard Bell tests rely. To this end, we redefined, in collaboration with the University of Geneva, the formalism of locality taking into account the influence, on correlation measurements, of the freedom of choice (in the basis settings) and of the limitation of the overall detection efficiency. Both assumptions allow devising generalized Bell inequalities whose experimental violations indicate that we can still attest for non locality for the observed states. In addition, we have studied and realized an experimental setup allowing to distribute entangled photon pairs in paired telecom channels for high bit rate quantum cryptography. We have shown that entanglement is preserved over a distance of 150 km with record rates for similar realizations, by mimicking classical network solutions exploiting, in an optimal fashion, the capacity of an optical fiber link via dense spectral multiplexing. Finally, we have studied the properties of light emitted by semiconductor lasers showing reduced dimensionality. This micro-lasers actually provide output light under high intensity fluctuations when they are pumped below the threshold. Their study allowed to refine our understanding on how the coherence builds up in these systems as the cavity is filled with photons.
34

Structure de la distribution de probabilités de l'état GHZ sous l'action locale de transformations du groupe U(2)

Gravel, Claude 04 1900 (has links)
Dans ce mémoire, je démontre que la distribution de probabilités de l'état quantique Greenberger-Horne-Zeilinger (GHZ) sous l'action locale de mesures de von Neumann indépendantes sur chaque qubit suit une distribution qui est une combinaison convexe de deux distributions. Les coefficients de la combinaison sont reliés aux parties équatoriales des mesures et les distributions associées à ces coefficients sont reliées aux parties réelles des mesures. Une application possible du résultat est qu'il permet de scinder en deux la simulation de l'état GHZ. Simuler, en pire cas ou en moyenne, un état quantique comme GHZ avec des ressources aléatoires, partagées ou privées, et des ressources classiques de communication, ou même des ressources fantaisistes comme les boîtes non locales, est un problème important en complexité de la communication quantique. On peut penser à ce problème de simulation comme un problème où plusieurs personnes obtiennent chacune une mesure de von Neumann à appliquer sur le sous-système de l'état GHZ qu'il partage avec les autres personnes. Chaque personne ne connaît que les données décrivant sa mesure et d'aucune façon une personne ne connaît les données décrivant la mesure d'une autre personne. Chaque personne obtient un résultat aléatoire classique. La distribution conjointe de ces résultats aléatoires classiques suit la distribution de probabilités trouvée dans ce mémoire. Le but est de simuler classiquement la distribution de probabilités de l'état GHZ. Mon résultat indique une marche à suivre qui consiste d'abord à simuler les parties équatoriales des mesures pour pouvoir ensuite savoir laquelle des distributions associées aux parties réelles des mesures il faut simuler. D'autres chercheurs ont trouvé comment simuler les parties équatoriales des mesures de von Neumann avec de la communication classique dans le cas de 3 personnes, mais la simulation des parties réelles résiste encore et toujours. / In this Master's thesis, I show that the probability distribution of the Greenberger-Horne-Zeilinger quantum state (GHZ) under local action of independent von Neumann measurements follows a convex distribution of two distributions.The coefficients of the combination are related to the equatorial parts of the measurements, and the distributions associated with those coefficients are associated with the real parts of the measurements. One possible application of my result is that it allows one to split into two pieces the simulation of the GHZ state. Simulating, in worst case or in average, a quantum state like the GHZ state with random resources, shared or private, as well as with classical communication resources or even odd resources like nonlocal boxes is a very important in the theory of quantum communication complexity. We can think of this simulation problem as a problem in which many people get the description of a von Neumann measurement. Each party does not know the description of any other measurements belonging to the other parties. Each party after having applied his measurement on the subsystem of the state that he shares with the others gets a classical outcome. The joint distribution of the outcomes of every parties follows the distribution studied in this thesis in the case of the GHZ state. My result indicates that in order to simulate the distribution, we can first simulate the equatorial parts of the measurements in order to know which distribution associated to the real parts of the measurements to simulate. Other researchers have found how to simulate the equatorial parts of the von Neumann measurements with classical resources in the case of 3 parties, but it is still unknown how to simulate the real parts.
35

Oscillation de Rabi à la frontière classique-quantique et génération de chats de Schrödinger

Auffeves, Alexia 29 June 2004 (has links) (PDF)
La production et l'étude de la décohérence<br />de superpositions mésoscopiques d'états, communéments<br />appelés "Chats de Schrödinger", est l'un des enjeux<br />majeurs de l'Electrodynamique Quantique en Cavité. Dans ce<br />mémoire nous présentons une nouvelle technique pour<br />générer des superpositions mésoscopiques d'états du champ<br />électromagnétique dans le mode d'une cavité supraconductrice<br />de grand facteur de qualité. Nous observons qu'un atome de<br />Rydberg interagissant de façon résonnante avec un champ<br />cohérent contenant quelques dizaines de photons scinde celui-ci<br />en deux composantes de phases opposées +/-phi où phi<br />est inversement proportionnel à la racine du nombre de photons.<br />Les phases du champ et du dipôle atomique sont intriquées.<br />L'objet microscopique qu'est l'atome laisse ainsi son empreinte<br />sur l'objet mésoscopique qu'est le champ. Cet effet, dû à la<br />granularité du champ, disparaît à la limite classique. Nous<br />avons vérifié la corrélation entre la phase atomique et la<br />phase du champ, puis préparé une superposition de deux champs<br />cohérents de phases opposées. Nous avons analysé la<br />distribution de phase du champ par une technique de détection<br />homodyne. Nous avons ensuite estimé la cohérence des<br />superpositions réalisées. La distance des chats préparés<br />par cette technique est de l'ordre de 20 photons. Tester la<br />non-localité de la Mécanique Quantique constitue également<br />une motivation de nos expériences. On présente une étude<br />théorique et numérique de violation des inégalités de Bell<br />avec des états cohérents intriqués préparés dans les<br />modes de deux cavités distinctes.
36

Structure de la distribution de probabilités de l'état GHZ sous l'action locale de transformations du groupe U(2)

Gravel, Claude 04 1900 (has links)
Dans ce mémoire, je démontre que la distribution de probabilités de l'état quantique Greenberger-Horne-Zeilinger (GHZ) sous l'action locale de mesures de von Neumann indépendantes sur chaque qubit suit une distribution qui est une combinaison convexe de deux distributions. Les coefficients de la combinaison sont reliés aux parties équatoriales des mesures et les distributions associées à ces coefficients sont reliées aux parties réelles des mesures. Une application possible du résultat est qu'il permet de scinder en deux la simulation de l'état GHZ. Simuler, en pire cas ou en moyenne, un état quantique comme GHZ avec des ressources aléatoires, partagées ou privées, et des ressources classiques de communication, ou même des ressources fantaisistes comme les boîtes non locales, est un problème important en complexité de la communication quantique. On peut penser à ce problème de simulation comme un problème où plusieurs personnes obtiennent chacune une mesure de von Neumann à appliquer sur le sous-système de l'état GHZ qu'il partage avec les autres personnes. Chaque personne ne connaît que les données décrivant sa mesure et d'aucune façon une personne ne connaît les données décrivant la mesure d'une autre personne. Chaque personne obtient un résultat aléatoire classique. La distribution conjointe de ces résultats aléatoires classiques suit la distribution de probabilités trouvée dans ce mémoire. Le but est de simuler classiquement la distribution de probabilités de l'état GHZ. Mon résultat indique une marche à suivre qui consiste d'abord à simuler les parties équatoriales des mesures pour pouvoir ensuite savoir laquelle des distributions associées aux parties réelles des mesures il faut simuler. D'autres chercheurs ont trouvé comment simuler les parties équatoriales des mesures de von Neumann avec de la communication classique dans le cas de 3 personnes, mais la simulation des parties réelles résiste encore et toujours. / In this Master's thesis, I show that the probability distribution of the Greenberger-Horne-Zeilinger quantum state (GHZ) under local action of independent von Neumann measurements follows a convex distribution of two distributions.The coefficients of the combination are related to the equatorial parts of the measurements, and the distributions associated with those coefficients are associated with the real parts of the measurements. One possible application of my result is that it allows one to split into two pieces the simulation of the GHZ state. Simulating, in worst case or in average, a quantum state like the GHZ state with random resources, shared or private, as well as with classical communication resources or even odd resources like nonlocal boxes is a very important in the theory of quantum communication complexity. We can think of this simulation problem as a problem in which many people get the description of a von Neumann measurement. Each party does not know the description of any other measurements belonging to the other parties. Each party after having applied his measurement on the subsystem of the state that he shares with the others gets a classical outcome. The joint distribution of the outcomes of every parties follows the distribution studied in this thesis in the case of the GHZ state. My result indicates that in order to simulate the distribution, we can first simulate the equatorial parts of the measurements in order to know which distribution associated to the real parts of the measurements to simulate. Other researchers have found how to simulate the equatorial parts of the von Neumann measurements with classical resources in the case of 3 parties, but it is still unknown how to simulate the real parts.
37

Planarité et Localité en Percolation

Tassion, Vincent 30 June 2014 (has links) (PDF)
Cette thèse s'inscrit dans l'étude mathématique de la percolation, qui regroupe une famille de modèles présentant une transition de phase. Des avancées majeures au cours des quinze dernières années, notamment l'invention du SLE et la preuve de l'invariance conforme de la percolation de Bernoulli critique, nous permettent aujourd'hui d'avoir une image très complète de la percolation de Bernoulli sur le réseau triangulaire. Cependant, de nombreuses questions demeurent ouvertes, et ont motivé notre travail.La première d'entre elle est l'universalité de la percolation plane, qui affirme que les propriétés macroscopiques de la percolation plane critique ne devraient pas dépendre du réseau sous-jacent à sa définition. Nous montrons, dans le cadre de la percolation Divide and Color, un résultat qui va dans le sens de cette universalité et identifions, dans ce contexte, des phénomènes macroscopiques indépendants du réseau microscopique. Une version plus faible d'universalité est donnée par la théorie de Russo-Seymour-Welsh (RSW), et sa validité est connue pour la percolation de Bernoulli (sans dépendance) sur les réseaux plans suffisamment symétriques. Nous étudions de nouveaux arguments de type RSW pour des modèles de percolation avec dépendance. La deuxième question que nous avons abordée est celle de l'absence d'une composante connexe ouverte infinie au point critique, une question importante du point de vue physique, puisqu'elle traduit la continuité de la transition de phase. Dans deux travaux en collaboration avec Hugo Duminil-Copin et Vladas Sidoravicius, nous montrons que la transition de phase est continue pour la percolation de Bernoulli sur le graphe Z^2x{0,...,k}, et pour la percolation FK sur le réseau carré avec paramètre q inférieur ou égal à 4. Enfin, la dernière question qui nous a guidés est la localité du point critique : la donnée des boules de grands rayons d'un graphe suffit-elle à identifier avec une bonne précision la valeur du point critique? Dans un travail en collaboration avec Sébastien Martineau, nous répondons de manière affirmative à cette question dans le cadre des graphes de Cayley de groupes abéliens.
38

L'équivalence entre le local-réalisme et le principe de non-signalement

Raymond-Robichaud, Paul 08 1900 (has links)
No description available.
39

XFOR (Multifor) : A new programming structure to ease the formulation of efficient loop optimizations / XFOR (Multifor) : nouvelle structure de programmation pour faciliter la formulation des optimisations efficaces de boucles

Fassi, Imen 27 November 2015 (has links)
Nous proposons une nouvelle structure de programmation appelée XFOR (Multifor), dédiée à la programmation orientée réutilisation de données. XFOR permet de gérer simultanément plusieurs boucles "for" ainsi que d’appliquer/composer des transformations de boucles d’une façon intuitive. Les expérimentations ont montré des accélérations significatives des codes XFOR par rapport aux codes originaux, mais aussi par rapport au codes générés automatiquement par l’optimiseur polyédrique de boucles Pluto. Nous avons mis en œuvre la structure XFOR par le développement de trois outils logiciels: (1) un compilateur source-à-source nommé IBB, qui traduit les codes XFOR en un code équivalent où les boucles XFOR ont été remplacées par des boucles for sémantiquement équivalentes. L’outil IBB bénéficie également des optimisations implémentées dans le générateur de code polyédrique CLooG qui est invoqué par IBB pour générer des boucles for à partir d’une description OpenScop; (2) un environnement de programmation XFOR nommé XFOR-WIZARD qui aide le programmeur dans la ré-écriture d’un programme utilisant des boucles for classiques en un programme équivalent, mais plus efficace, utilisant des boucles XFOR; (3) un outil appelé XFORGEN, qui génère automatiquement des boucles XFOR à partir de toute représentation OpenScop de nids de boucles transformées générées automatiquement par un optimiseur automatique. / We propose a new programming structure named XFOR (Multifor), dedicated to data-reuse aware programming. It allows to handle several for-loops simultaneously and map their respective iteration domains onto each other. Additionally, XFOR eases loop transformations application and composition. Experiments show that XFOR codes provides significant speed-ups when compared to the original code versions, but also to the Pluto optimized versions. We implemented the XFOR structure through the development of three software tools: (1) a source-to-source compiler named IBB for Iterate-But-Better!, which automatically translates any C/C++ code containing XFOR-loops into an equivalent code where XFOR-loops have been translated into for-loops. IBB takes also benefit of optimizations implemented in the polyhedral code generator CLooG which is invoked by IBB to generate for-loops from an OpenScop specification; (2) an XFOR programming environment named XFOR-WIZARD that assists the programmer in re-writing a program with classical for-loops into an equivalent but more efficient program using XFOR-loops; (3) a tool named XFORGEN, which automatically generates XFOR-loops from any OpenScop representation of transformed loop nests automatically generated by an automatic optimizer.
40

High Performance by Exploiting Information Locality through Reverse Computing / Hautes Performances en Exploitant la Localité de l'Information via le Calcul Réversible.

Bahi, Mouad 21 December 2011 (has links)
Les trois principales ressources du calcul sont le temps, l'espace et l'énergie, les minimiser constitue un des défis les plus importants de la recherche de la performance des processeurs.Dans cette thèse, nous nous intéressons à un quatrième facteur qui est l'information. L'information a un impact direct sur ces trois facteurs, et nous montrons comment elle contribue ainsi à l'optimisation des performances. Landauer a montré que c’est la destruction - logique - d’information qui coûte de l’énergie, ceci est un résultat fondamental de la thermodynamique en physique. Sous cette hypothèse, un calcul ne consommant pas d’énergie est donc un calcul qui ne détruit pas d’information. On peut toujours retrouver les valeurs d’origine et intermédiaires à tout moment du calcul, le calcul est réversible. L'information peut être portée non seulement par une donnée mais aussi par le processus et les données d’entrée qui la génèrent. Quand un calcul est réversible, on peut aussi retrouver une information au moyen de données déjà calculées et du calcul inverse. Donc, le calcul réversible améliore la localité de l'information. La thèse développe ces idées dans deux directions. Dans la première partie, partant d'un calcul, donné sous forme de DAG (graphe dirigé acyclique), nous définissons la notion de « garbage » comme étant la taille mémoire – le nombre de registres - supplémentaire nécessaire pour rendre ce calcul réversible. Nous proposons un allocateur réversible de registres, et nous montrons empiriquement que le garbage est au maximum la moitié du nombre de noeuds du graphe.La deuxième partie consiste à appliquer cette approche au compromis entre le recalcul (direct ou inverse) et le stockage dans le contexte des supercalculateurs que sont les récents coprocesseurs vectoriels et parallèles, cartes graphiques (GPU, Graphics Processing Unit), processeur Cell d’IBM, etc., où le fossé entre temps d’accès à la mémoire et temps de calcul ne fait que s'aggraver. Nous montons comment le recalcul en général, et le recalcul inverse en particulier, permettent de minimiser la demande en registres et par suite la pression sur la mémoire. Cette démarche conduit également à augmenter significativement le parallélisme d’instructions (Cell BE), et le parallélisme de threads sur un multicore avec mémoire et/ou banc de registres partagés (GPU), dans lequel le nombre de threads dépend de manière importante du nombre de registres utilisés par un thread. Ainsi, l’ajout d’instructions du fait du calcul inverse pour la rematérialisation de certaines variables est largement compensé par le gain en parallélisme. Nos expérimentations sur le code de Lattice QCD porté sur un GPU Nvidia montrent un gain de performances atteignant 11%. / The main resources for computation are time, space and energy. Reducing them is the main challenge in the field of processor performance.In this thesis, we are interested in a fourth factor which is information. Information has an important and direct impact on these three resources. We show how it contributes to performance optimization. Landauer has suggested that independently on the hardware where computation is run information erasure generates dissipated energy. This is a fundamental result of thermodynamics in physics. Therefore, under this hypothesis, only reversible computations where no information is ever lost, are likely to be thermodynamically adiabatic and do not dissipate power. Reversibility means that data can always be retrieved from any point of the program. Information may be carried not only by the data but also by the process and input data that generate it. When a computation is reversible, information can also be retrieved from other already computed data and reverse computation. Hence reversible computing improves information locality.This thesis develops these ideas in two directions. In the first part, we address the issue of making a computation DAG (directed acyclic graph) reversible in terms of spatial complexity. We define energetic garbage as the additional number of registers needed for the reversible computation with respect to the original computation. We propose a reversible register allocator and we show empirically that the garbage size is never more than 50% of the DAG size. In the second part, we apply this approach to the trade-off between recomputing (direct or reverse) and storage in the context of supercomputers such as the recent vector and parallel coprocessors, graphical processing units (GPUs), IBM Cell processor, etc., where the gap between processor cycle time and memory access time is increasing. We show that recomputing in general and reverse computing in particular helps reduce register requirements and memory pressure. This approach of reverse rematerialization also contributes to the increase of instruction-level parallelism (Cell) and thread-level parallelism in multicore processors with shared register/memory file (GPU). On the latter architecture, the number of registers required by the kernel limits the number of running threads and affects performance. Reverse rematerialization generates additional instructions but their cost can be hidden by the parallelism gain. Experiments on the highly memory demanding Lattice QCD simulation code on Nvidia GPU show a performance gain up to 11%.

Page generated in 0.0487 seconds