• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Théorie des modèles des groupes abéliens valués / Model theory of Abelian valued groups

Guignot, Francois 09 November 2016 (has links)
Cette thèse est consacrée à la théorie des modèles des groupes abéliens valués. Nousdonnons à la fin du premier chapitre un exemple assez simple montrant qu’au contrairedes groupes abéliens ordonnés, les groupes abéliens valués ne sont pas tous dépendants(NIP). La question de la propriété d’indépendance est d’ailleurs au coeur du manuscrit.Nous travaillons dans un langage à deux sortes constitué de symboles pour : la loi de groupe,le symétrique et l’élément neutre (sorte du groupe), l’ordre sur la chaîne et l’infini (sortede la chaîne de valuation) et enfin la valuation elle-même. La première partie (chapitres 2,3 et 4) traite le cas du groupe additif Z des entiers relatifs muni d’une valuation p-adique(avec p premier) et de la théorie commune à ces structures. Dans chaque cas, on obtientune axiomatisation et une élimination des quanteurs dans un langage un peu enrichi, lecaractère NIP est démontré et une étude succincte des types définissables est proposée.La deuxième partie commence par le seul chapitre généraliste du texte, où l’on adapte lapp-élimination des quantificateurs dans les modules au cadre des groupes abéliens valués.Le chapitre 6 s’intéresse aux groupes valués à chaîne finie construits sur Z : on y axiomatiseleur théorie commune et les complétions de celle-ci, pour lesquelles on donne également uneélimination des quanteurs. Enfin, le chapitre 7 s’appuie sur les résultats des chapitres 5 et 6pour fournir une élimination des quantificateurs dans le cas d’un groupe valué quelconqueconstruit sur Z et pour en déduire le caractère NIP. / The purpose of this thesis is to study model theory of abelian valued groups. At theend of the first chapter, a basic example is given, showing that, in sharp contrast to orderedabelian groups, abelian valued groups may not be dependent (NIP). The topic of IndependenceProperty is focused on throughout the manuscript. The language used is two-sortedand contains symbols for : the group operation, the inverse and the identity element (sortof the group), the order on the chain and the infinity (sort of the value chain) and finallythe valuation itself. The first part (chapters 2, 3 and 4) deals with the case of the additivegroup Z of integers endowed with a p-adic valuation (with p a prime number) and withthe common theory to these structures. In each case, an axiomatization and a quantifierelimination in a language a bit larger are obtained, the lack of the Independence Propertyis proven and a short study of definable types is propounded. The second part begins withthe only general chapter of the work, where the pp-elimination of quantifiers for modules isadapted to the framework of valued abelian groups. The chapter 6 aims at studying valuedgroups with finite chains, with Z as the underlying group : their common theory and itscompletions, for which a quantifier elimination result is also given, are axiomatized. Finally,the chapter 7, based upon the results of chapters 5 and 6, gives a quantifier eliminationfor any valued group having Z as the underlying group and deduces from this the fact thatthese valued groups are NIP.
2

Chaînes et dépendance

De Aldama Sánchez, Ricardo 18 December 2009 (has links) (PDF)
Le cadre général de cette thèse est celui de la propriété d'indépendance en théorie des modèles. Les théories sans cette propriété sont appelées NIP ou dépendantes. L'objectif principal est de trouver de nouveaux exemples de théories appartenant à cette classe. Nous montrons d'abord un résultat isolé qui répond une question de Pillay : dans un groupe NIP possédant une partie infinie de classe de nilpotence finie, on y trouve un sous-groupe définissable de même classe de nilpotence et contenant cette partie infinie. Le reste de la thèse est motivé par deux cadres extrêmement proches : les groupes abéliens munis d'une chaîne de sous-groupes uniformément définissables, et les groupes abéliens valués. Dans le premier cas nous identifions une certaine théorie et nous étudions plusieurs extensions de cette théorie. Nous prouvons une élimination des quantificateurs dans chacune des ses extensions, grâce à laquelle la NIP en découle facilement. Le dernier résultat est le plus substantiel. Nous montrons qu'une théorie naturelle de chaîne colorée munie quasi-automorphismes n'a pas la propriété d'indépendance. Nous appliquons ensuite ce résultat à une certaine théorie de groupes valués, étudiée par Simonetta dans le contexte des groupes C-minimaux, pour en conclure qu'elle est NIP. Nous montrons aussi d'une façon assez directe (en utilisant des résultats de Rubin et Poizat) qu'une chaîne colorée munie d'automorphismes est NIP.
3

Chaînes et dépendance / Linear orders and dependence

De aldama sánchez, Ricardo 18 December 2009 (has links)
Le cadre général de cette thèse est celui de la propriété d’indépendance en théorie des modèles. Les théories sans cette propriété sont appelées NIP ou dépendantes. L’objectif principal est de trouver de nouveaux exemples de théories appartenant à cette classe. Nous montrons d’abord un résultat isolé qui répond une question de Pillay : dans un groupe NIP possédant une partie infinie de classe de nilpotence finie, on y trouve un sous-groupe définissable de même classe de nilpotence et contenant cette partie infinie. Le reste de la thèse est motivé par deux cadres extrêmement proches : les groupes abéliens munis d’une chaîne de sous-groupes uniformément définissables, et les groupes abéliens valués. Dans le premier cas nous identifions une certaine théorie et nous étudions plusieurs extensions de cette théorie. Nous prouvons une élimination des quantificateurs dans chacune des ses extensions, grâce à laquelle la NIP en découle facilement. Le dernier résultat est le plus substantiel. Nous montrons qu’une théorie naturelle de chaîne colorée munie quasi-automorphismes n’a pas la propriété d’indépendance. Nous appliquons ensuite ce résultat à une certaine théorie de groupes valués, étudiée par Simonetta dans le contexte des groupes C-minimaux, pour en conclure qu’elle est NIP. Nous montrons aussi d’une façon assez directe (en utilisant des résultats de Rubin et Poizat) qu’une chaîne colorée munie d’automorphismes est NIP. / This PhD thesis is in the general area of the independence property in model theory.Theories without this property are called NIP or dependent. The main objective of this thesis is to find new examples belonging to this class. Firstly, we prove an isolated result that answers a question stated by Pillay : if a NIP group contains an infinite set of finite nilpotency class, then there exists a definable subgroup of the same nilpotency class containing this set. The rest of this thesis is motivated by two extremely closed related contexts : abelian groups equipped with an uniformly definable chain of subgroups, and valued groups. In the first case we identify a theory and study several extensions of it. We prove quantifier elimination in each of these extensions, and use it to easily conclude that they are NIP. The last result is the most significant one. We prove that a natural theory of linear orderings equipped with quasi-automorphisms doesn’t have the independence property. Then we apply this result to a particular theory of valued abelian groups, which has been studied by Simonetta in the context of C-minimal groups, to conclude that it is NIP. We also prove in a rather straightforward way (using results by Rubin and Poizat) that a linear ordering equipped with automorphisms is NIP
4

Planarité et Localité en Percolation

Tassion, Vincent 30 June 2014 (has links) (PDF)
Cette thèse s'inscrit dans l'étude mathématique de la percolation, qui regroupe une famille de modèles présentant une transition de phase. Des avancées majeures au cours des quinze dernières années, notamment l'invention du SLE et la preuve de l'invariance conforme de la percolation de Bernoulli critique, nous permettent aujourd'hui d'avoir une image très complète de la percolation de Bernoulli sur le réseau triangulaire. Cependant, de nombreuses questions demeurent ouvertes, et ont motivé notre travail.La première d'entre elle est l'universalité de la percolation plane, qui affirme que les propriétés macroscopiques de la percolation plane critique ne devraient pas dépendre du réseau sous-jacent à sa définition. Nous montrons, dans le cadre de la percolation Divide and Color, un résultat qui va dans le sens de cette universalité et identifions, dans ce contexte, des phénomènes macroscopiques indépendants du réseau microscopique. Une version plus faible d'universalité est donnée par la théorie de Russo-Seymour-Welsh (RSW), et sa validité est connue pour la percolation de Bernoulli (sans dépendance) sur les réseaux plans suffisamment symétriques. Nous étudions de nouveaux arguments de type RSW pour des modèles de percolation avec dépendance. La deuxième question que nous avons abordée est celle de l'absence d'une composante connexe ouverte infinie au point critique, une question importante du point de vue physique, puisqu'elle traduit la continuité de la transition de phase. Dans deux travaux en collaboration avec Hugo Duminil-Copin et Vladas Sidoravicius, nous montrons que la transition de phase est continue pour la percolation de Bernoulli sur le graphe Z^2x{0,...,k}, et pour la percolation FK sur le réseau carré avec paramètre q inférieur ou égal à 4. Enfin, la dernière question qui nous a guidés est la localité du point critique : la donnée des boules de grands rayons d'un graphe suffit-elle à identifier avec une bonne précision la valeur du point critique? Dans un travail en collaboration avec Sébastien Martineau, nous répondons de manière affirmative à cette question dans le cadre des graphes de Cayley de groupes abéliens.
5

Planarité et Localité en Percolation / Planarity and locality in percolation theory

Tassion, Vincent 30 June 2014 (has links)
Cette thèse s'inscrit dans l'étude mathématique de la percolation, qui regroupe une famille de modèles présentant une transition de phase. Des avancées majeures au cours des quinze dernières années, notamment l'invention du SLE et la preuve de l'invariance conforme de la percolation de Bernoulli critique, nous permettent aujourd'hui d'avoir une image très complète de la percolation de Bernoulli sur le réseau triangulaire. Cependant, de nombreuses questions demeurent ouvertes, et ont motivé notre travail.La première d'entre elle est l'universalité de la percolation plane, qui affirme que les propriétés macroscopiques de la percolation plane critique ne devraient pas dépendre du réseau sous-jacent à sa définition. Nous montrons, dans le cadre de la percolation Divide and Color, un résultat qui va dans le sens de cette universalité et identifions, dans ce contexte, des phénomènes macroscopiques indépendants du réseau microscopique. Une version plus faible d'universalité est donnée par la théorie de Russo-Seymour-Welsh (RSW), et sa validité est connue pour la percolation de Bernoulli (sans dépendance) sur les réseaux plans suffisamment symétriques. Nous étudions de nouveaux arguments de type RSW pour des modèles de percolation avec dépendance. La deuxième question que nous avons abordée est celle de l'absence d'une composante connexe ouverte infinie au point critique, une question importante du point de vue physique, puisqu'elle traduit la continuité de la transition de phase. Dans deux travaux en collaboration avec Hugo Duminil-Copin et Vladas Sidoravicius, nous montrons que la transition de phase est continue pour la percolation de Bernoulli sur le graphe Z^2x{0,...,k}, et pour la percolation FK sur le réseau carré avec paramètre q inférieur ou égal à 4. Enfin, la dernière question qui nous a guidés est la localité du point critique : la donnée des boules de grands rayons d'un graphe suffit-elle à identifier avec une bonne précision la valeur du point critique? Dans un travail en collaboration avec Sébastien Martineau, nous répondons de manière affirmative à cette question dans le cadre des graphes de Cayley de groupes abéliens. / This thesis is part of the mathematical study of percolation theory, which includes a family of models with a phase transition. Major advances in the 2000s, including the invention of SLE and the proof of conformal invariance of critical Bernoulli percolation, provide us with a very complete picture of the Bernoulli percolation process on the triangular lattice. Fortunately, many questions remain open, and motivated our work.The first of these is the universality of planar percolation, which states that the macroscopic properties of critical planar percolation should not depend on the underlying graph. We study this question in the framework of Divide and Color percolation, and prove in this context a result that goes in the direction of universality. A weaker universality statement is given by the theory of Russo-Seymour-Welsh (RSW), which is known to hold for planar Bernoulli percolation (without dependence) on sufficiently symmetric graphs. We study new RSW-type arguments for percolation models with dependence.The second question is the absence of an infinite cluster at the critical point, an important question from a physical point of view, equivalent to the continuity of the phase transition. In two different joint works with Hugo Duminil-Copin and Vladas Sidoravicius, we show that the phase transition is continuous for Bernoulli percolation on the graph Z^2 x {0,...,k} and for FK percolation on the square lattice with parameter q smaller than or equal to 4.Finally, the last question that guided us is the locality of the critical point: is it possible to determine with good accuracy the critical value for Bernoulli percolation on a graph if we know only the balls with large radii? Jointly with Sébastien Martineau, we answer positively to this question in the framework of Cayley graphs of abelian groups.

Page generated in 0.0559 seconds