Spelling suggestions: "subject:"nonsupervised learning"" "subject:"onsupervised learning""
171 |
Time-domain Deep Neural Networks for Speech SeparationSun, Tao 24 May 2022 (has links)
No description available.
|
172 |
Using Instance-Level Meta-Information to Facilitate a More Principled Approach to Machine LearningSmith, Michael Reed 01 April 2015 (has links) (PDF)
As the capability for capturing and storing data increases and becomes more ubiquitous, an increasing number of organizations are looking to use machine learning techniques as a means of understanding and leveraging their data. However, the success of applying machine learning techniques depends on which learning algorithm is selected, the hyperparameters that are provided to the selected learning algorithm, and the data that is supplied to the learning algorithm. Even among machine learning experts, selecting an appropriate learning algorithm, setting its associated hyperparameters, and preprocessing the data can be a challenging task and is generally left to the expertise of an experienced practitioner, intuition, trial and error, or another heuristic approach. This dissertation proposes a more principled approach to understand how the learning algorithm, hyperparameters, and data interact with each other to facilitate a data-driven approach for applying machine learning techniques. Specifically, this dissertation examines the properties of the training data and proposes techniques to integrate this information into the learning process and for preprocessing the training set.It also proposes techniques and tools to address selecting a learning algorithm and setting its hyperparameters.This dissertation is comprised of a collection of papers that address understanding the data used in machine learning and the relationship between the data, the performance of a learning algorithm, and the learning algorithms associated hyperparameter settings.Contributions of this dissertation include:* Instance hardness that examines how difficult an instance is to classify correctly.* hardness measures that characterize properties of why an instance may be misclassified.* Several techniques for integrating instance hardness into the learning process. These techniques demonstrate the importance of considering each instance individually rather than doing a global optimization which considers all instances equally.* Large-scale examinations of the investigated techniques including a large numbers of examined data sets and learning algorithms. This provides more robust results that are less likely to be affected by noise.* The Machine Learning Results Repository, a repository for storing the results from machine learning experiments at the instance level (the prediction for each instance is stored). This allows many data set-level measures to be calculated such as accuracy, precision, or recall. These results can be used to better understand the interaction between the data, learning algorithms, and associated hyperparameters. Further, the repository is designed to be a tool for the community where data can be downloaded and uploaded to follow the development of machine learning algorithms and applications.
|
173 |
Semi-Supervised Learning with Sparse Autoencoders in Automatic Speech Recognition / Semi-övervakad inlärning med glesa autoencoders i automatisk taligenkänningDHAKA, AKASH KUMAR January 2016 (has links)
This work is aimed at exploring semi-supervised learning techniques to improve the performance of Automatic Speech Recognition systems. Semi-supervised learning takes advantage of unlabeled data in order to improve the quality of the representations extracted from the data.The proposed model is a neural network where the weights are updated by minimizing the weighted sum of a supervised and an unsupervised cost function, simultaneously. These costs are evaluated on the labeled and unlabeled portions of the data set, respectively. The combined cost is optimized through mini-batch stochastic gradient descent via standard backpropagation.The model was tested on a phone classification task on the TIMIT American English data set and on a written digit classification task on the MNIST data set. Our results show that the model outperforms a network trained with standard backpropagation on the labelled material alone. The results are also in line with state-of-the-art graph-based semi-supervised training methods. / Detta arbete syftar till att utforska halvövervakade inlärningstekniker (semi-supervised learning techniques) för att förbättra prestandan hos automatiska taligenkänningssystem.Halvövervakad maskininlärning använder sig av data ej märkt med klasstillhörighetsinformation för att förbättra kvaliteten hos den från datan extraherade representationen.Modellen som beskrivs i arbetet är ett neuralt nätverk där vikterna uppdateras genom att samtidigt minimera den viktade summan av en övervakad och en oövervakad kostnadsfunktion.Dessa kostnadsfunktioner evalueras på den märkta respektive den omärkta datamängden.De kombinerade kostnadsfunktionerna optimeras genom gradient descent med hjälp av traditionell backpropagation.Modellen har evaluerats genom en fonklassificeringsuppgift på datamängden TIMIT American English, samt en sifferklassificeringsuppgift på datamängden MNIST.Resultaten visar att modellen presterar bättre än ett nätverk tränat med backpropagation på endast märkt data.Resultaten är även konkurrenskraftiga med rådande state of the art, grafbaserade halvövervakade inlärningsmetoder.
|
174 |
Study of Semi-supervised Deep Learning Methods on Human Activity Recognition TasksSong, Shiping January 2019 (has links)
This project focuses on semi-supervised human activity recognition (HAR) tasks, in which the inputs are partly labeled time series data acquired from sensors such as accelerometer data, and the outputs are predefined human activities. Most state-of-the-art existing work in HAR area is supervised now, which relies on fully labeled datasets. Since the cost to label the collective instances increases fast with the increasing scale of data, semi-supervised methods are now widely required. This report proposed two semi-supervised methods and then investigated how well they perform on a partly labeled dataset, comparing to the state-of-the-art supervised method. One of these methods is designed based on the state-of-the-art supervised method, Deep-ConvLSTM, together with the semi-supervised learning concepts, self-training. Another one is modified based on a semi-supervised deep learning method, LSTM initialized by seq2seq autoencoder, which is firstly introduced for natural language processing. According to the experiments on a published dataset (Opportunity Activity Recognition dataset), both of these semi-supervised methods have better performance than the state-of-the-art supervised methods. / Detta projekt fokuserar på halvövervakad Human Activity Recognition (HAR), där indata delvis är märkta tidsseriedata från sensorer som t.ex. accelerometrar, och utdata är fördefinierade mänskliga aktiviteter. De främsta arbetena inom HAR-området använder numera övervakade metoder, vilka bygger på fullt märkta dataset. Eftersom kostnaden för att märka de samlade instanserna ökar snabbt med den ökade omfattningen av data, föredras numera ofta halvövervakade metoder. I denna rapport föreslås två halvövervakade metoder och det undersöks hur bra de presterar på ett delvis märkt dataset jämfört med den moderna övervakade metoden. En av dessa metoder utformas baserat på en högkvalitativ övervakad metod, DeepConvLSTM, kombinerad med självutbildning. En annan metod baseras på en halvövervakad djupinlärningsmetod, LSTM, initierad av seq2seq autoencoder, som först införs för behandling av naturligt språk. Enligt experimenten på ett publicerat dataset (Opportunity Activity Recognition dataset) har båda dessa metoder bättre prestanda än de toppmoderna övervakade metoderna.
|
175 |
Comparative Study of the Combined Performance of Learning Algorithms and Preprocessing Techniques for Text ClassificationGrancharova, Mila, Jangefalk, Michaela January 2018 (has links)
With the development in the area of machine learning, society has become more dependent on applications that build on machine learning techniques. Despite this, there are extensive classification tasks which are still performed by humans. This is time costly and often results in errors. One application in machine learning is text classification which has been researched a lot the past twenty years. Text classification tasks can be automated through the machine learning technique supervised learning which can lead to increased performance compared to manual classification. When handling text data, the data often has to be preprocessed in different ways to assure a good classification. Preprocessing techniques have been shown to increase performance of text classification through supervised learning. Different processing techniques affect the performance differently depending on the choice of learning algorithm and characteristics of the data set. This thesis investigates how classification accuracy is affected by different learning algorithms and different preprocessing techniques for a specific customer feedback data set. The researched algorithms are Naïve Bayes, Support Vector Machine and Decision Tree. The research is done by experiments with dependency on algorithm and combinations of preprocessing techniques. The results show that spelling correction and removing stop words increase the accuracy for all classifiers while stemming lowers the accuracy for all classifiers. Furthermore, Decision Tree was most positively affected by preprocessing while Support Vector Machine was most negatively affected. A deeper study on why the preprocessing techniques affected the algorithms in such a way is recommended for future work. / I och med utvecklingen inom området maskininlärning har samhället blivit mer beroende av applikationer som bygger på maskininlärningstekniker. Trots detta finns omfattande klassificeringsuppgifter som fortfarande utförs av människor. Detta är tidskrävande och resulterar ofta i olika typer av fel. En uppgift inom maskininlärning är textklassificering som har forskats mycket i de senaste tjugo åren. Textklassificering kan automatiseras genom övervakad maskininlärningsteknik vilket kan leda till effektiviseringar jämfört med manuell klassificering. Ofta måste textdata förbehandlas på olika sätt för att säkerställa en god klassificering. Förbehandlingstekniker har visat sig öka textklassificeringens prestanda genom övervakad inlärning. Olika förbetningstekniker påverkar prestandan olika beroende på valet av inlärningsalgoritm och egenskaper hos datamängden. Denna avhandling undersöker hur klassificeringsnoggrannheten påverkas av olika inlärningsalgoritmer och olika förbehandlingstekniker för en specifik datamängd som utgörs av kunddata. De undersökta algoritmerna är naïve Bayes, supportvektormaskin och beslutsträd. Undersökningen görs genom experiment med beroende av algoritm och kombinationer av förbehandlingstekniker. Resultaten visar att stavningskorrektion och borttagning av stoppord ökar noggrannheten för alla klassificerare medan stämming sänker noggrannheten för alla. Decision Tree var dessutom mest positivt påverkad av de olika förbehandlingsmetoderna medan Support Vector Machine påverkades mest negativt. En djupare studie om varför förbehandlingsresultaten påverkat algoritmerna på ett sådant sätt rekommenderas för framtida arbete.
|
176 |
Semi-supervised Learning for Real-world Object Recognition using Adversarial AutoencodersMittal, Sudhanshu January 2017 (has links)
For many real-world applications, labeled data can be costly to obtain. Semi-supervised learning methods make use of substantially available unlabeled data along with few labeled samples. Most of the latest work on semi-supervised learning for image classification show performance on standard machine learning datasets like MNIST, SVHN, etc. In this work, we propose a convolutional adversarial autoencoder architecture for real-world data. We demonstrate the application of this architecture for semi-supervised object recognition. We show that our approach can learn from limited labeled data and outperform fully-supervised CNN baseline method by about 4% on real-world datasets. We also achieve competitive performance on the MNIST dataset compared to state-of-the-art semi-supervised learning techniques. To spur research in this direction, we compiled two real-world datasets: Internet (WIS) dataset and Real-world (RW) dataset which consists of more than 20K labeled samples each, comprising of small household objects belonging to ten classes. We also show a possible application of this method for online learning in robotics. / I de flesta verklighetsbaserade tillämpningar kan det vara kostsamt att erhålla märkt data. Inlärningsmetoder som är semi-övervakade använder sig oftast i stor utsträckning av omärkt data med stöd av en liten mängd märkt data. Mycket av det senaste arbetet inom semiövervakade inlärningsmetoder för bildklassificering visar prestanda på standardiserad maskininlärning så som MNIST, SVHN, och så vidare. I det här arbetet föreslår vi en convolutional adversarial autoencoder arkitektur för verklighetsbaserad data. Vi demonstrerar tillämpningen av denna arkitektur för semi-övervakad objektidentifiering och visar att vårt tillvägagångssätt kan lära sig av ett begränsat antal märkt data. Därmed överträffar vi den fullt övervakade CNN-baslinjemetoden med ca. 4% på verklighetsbaserade datauppsättningar. Vi uppnår även konkurrenskraftig prestanda på MNIST datauppsättningen jämfört med moderna semi-övervakade inlärningsmetoder. För att stimulera forskningen i den här riktningen, samlade vi två verklighetsbaserade datauppsättningar: Internet (WIS) och Real-world (RW) datauppsättningar, som består av mer än 20 000 märkta prov vardera, som utgörs av små hushållsobjekt tillhörandes tio klasser. Vi visar också en möjlig tillämpning av den här metoden för online-inlärning i robotik.
|
177 |
Analysis of Emergency Medical Transport Datasets using Machine Learning / Analys av ambulanstransport medelst maskininlärningLetzner, Josefine January 2017 (has links)
The selection of hospital once an ambulance has picked up its patient is today decided by the ambulance staff. This report describes a supervised machinelearning approach for predicting hospital selection. This is a multi-classclassification problem. The performance of random forest, logistic regression and neural network were compared to each other and to a baseline, namely the one rule-algorithm. The algorithms were applied to real world data from SOS-alarm, the company that operate Sweden’s emergency call services. Performance was measured with accuracy and f1-score. Random Forest got the best result followed by neural network. Logistic regression exhibited slightly inferior results but still performed far better than the baseline. The results point toward machine learning being a suitable method for learning the problem of hospital selection. / Beslutet om till vilket sjukhus en ambulans ska köra patienten till bestäms idag av ambulanspersonalen. Den här rapporten beskriver användandet av övervakad maskininlärning för att förutsåga detta beslut. Resultaten från algoritmerna slumpmässig skog, logistisk regression och neurala nätvärk jämförs med varanda och mot ett basvärde. Basvärdet erhölls med algorithmen en-regel. Algoritmerna applicerades på verklig data från SOS-alarm, Sveriges operatör för larmsamtal. Resultaten mättes med noggrannhet och f1-poäng. Slumpmässigskog visade bäst resultat följt av neurala nätverk. Logistisk regression uppvisade något sämre resultat men var fortfarande betydligt bättre än basvärdet. Resultaten pekar mot att det är lämpligt att använda maskininlärning för att lära sig att ta beslut om val av sjukhus.
|
178 |
Detection of Web API Content Scraping : An Empirical Study of Machine Learning Algorithms / Igenkänning av webb-API-scraping : En empirisk studie om maskininlärningsalgoritmerJawad, Dina January 2017 (has links)
Scraping is known to be difficult to detect and prevent, especially in the context of web APIs. It is in the interest of organisations that rely heavily on the content they provide through their web APIs to protect their content from scrapers. In this thesis, a machine learning approach towards detecting web API content scrapers is proposed. Three supervised machine learning algorithms were evaluated to see which would perform better on data from Spotify's web API. Data used to evaluate the classifiers consisted of aggregated HTTP request data that describes each application having sent HTTP requests to the web API over a span of two weeks. Two separate experiments were performed for each classifier, where the second experiment consisted of synthetic data for scrapers (the minority class) in addition to the original dataset. SMOTE was the algorithm used to perform oversampling in experiment two. The results show that Random Forest was the better classifier, with an MCC value of 0.692, without the use of synthetic data. For this particular problem, it is crucial that the classifier does not have a high false positive rate as legitimate usage of the web API should not be blocked. The Random Forest classifier has a low false positive rate and is therefore more favourable, and considered the strongest classifier out of the three examined. / Scraping är svårt att upptäcka och undvika, speciellt vad gäller att upptäcka applikationer som skrapar webb-APIer. Det finns ett särskilt intresse för organisationer, som är beroende av innehållet de tillhandahåller via sina webb-APIer, att skydda innehållet från applikationer som skrapar det. I denna avhandling föreslås ett tillvägagångssätt för att upptäcka dessa applikationer med hjälp av maskininlärning. Tre maskininlärningsalgoritmer utvärderades för att se vilka som skulle fungera bäst på data från Spotify's webb-API. Data som användes för att utvärdera dessa klassificerare bestod av aggregerade HTTP-request-data som beskriver varje applikation som har skickat HTTP-requests till webb-APIet under två veckors tid. Två separata experiment utfördes för varje klassificerare, där det andra experimentet var utökat med syntetisk data för applikationer som skrapar (minoritetsklassen) utöver det ursprungliga som användes i första experimentet. SMOTE var algoritmen som användes för att generera syntetisk data i experiment två. Resultaten visar att Random Forest var den bättre klassificeraren, med ett MCC-värde på 0,692, utan syntetisk data i det första experimentet. I detta fall är det viktigt att klassificeraren inte genererar många falska positiva resultat eftersom vanlig användning av ett web-API inte bör blockeras. Random Forest klassificeraren genererar få falska positiva resultat och är därför mer fördelaktig och anses vara den mest pålitliga klassificeraren av de tre undersökta.
|
179 |
Predicting Fashion using Machine Learning techniques / Att förutspå mode med maskininlärningMona, Dadoun January 2017 (has links)
On a high-level perspective, fashion is an art defined by fash- ion stylists and designers to express their thoughts and opinions. Lately, fashion have also been defined by digital publishers such as bloggers and online magazines. These digital publishers create fashion by curating and publishing content that is hopefully rel- evant and of high quality for their readers. Within this master’s thesis, fashion forecasting was investigated by applying supervised machine learning techniques. The problem was investigated by training classification learning models on a real world historical fashion dataset. The investigation has shown promising results, where fashion forecasting has been achieved with an average ac- curacy above 65 % . / På en abstrakt nivå definieras mode av stylister och designers.Dessa väljer att uttrycka sina tankar och åsikter genom att skapamode. På senare tid har mode också definierats av digitala förlagsom bloggare och onlinemagasin. Dessa digitala förlag definierarmode genom att skapa och publicera innehåll som förhoppningsvisär relevant och av hög kvalitet för sina läsare. I den här uppsatsen,undersöktes modeprognoser genom att använda sig av övervakademaskininlärningstekniker. Problemet undersöktes genom att läraklassificeringsinlärningsmodeller på ett verkligt historiskt datasetför mode. Undersökningen har visat lovande resultat där modeprognoserhar kunnat nås med en genomsnittlig noggrannhet över 65 %. / Maskininlärning, Förutspå Mode, Mode, Algoritmer, Klassificering
|
180 |
Calibration in Eye Tracking Using Transfer Learning / Kalibrering inom Eye Tracking genom överföringsträningMasko, David January 2017 (has links)
This thesis empirically studies transfer learning as a calibration framework for Convolutional Neural Network (CNN) based appearance-based gaze estimation models. A dataset of approximately 1,900,000 eyestripe images distributed over 1682 subjects is used to train and evaluate several gaze estimation models. Each model is initially trained on the training data resulting in generic gaze models. The models are subsequently calibrated for each test subject, using the subject's calibration data, by applying transfer learning through network fine-tuning on the final layers of the network. Transfer learning is observed to reduce the Euclidean distance error of the generic models within the range of 12-21%, which is in line with current state-of-the-art. The best performing calibrated model shows a mean error of 29.53mm and a median error of 22.77mm. However, calibrating heatmap output-based gaze estimation models decreases the performance over the generic models. It is concluded that transfer learning is a viable calibration framework for improving the performance of CNN-based appearance based gaze estimation models. / Detta examensarbete är en empirisk studie på överföringsträning som ramverk för kalibrering av neurala faltningsnätverks (CNN)-baserade bildbaserad blickapproximationsmodeller. En datamängd på omkring 1 900 000 ögonrandsbilder fördelat över 1682 personer används för att träna och bedöma flertalet blickapproximationsmodeller. Varje modell tränas inledningsvis på all träningsdata, vilket resulterar i generiska modeller. Modellerna kalibreras därefter för vardera testperson med testpersonens kalibreringsdata via överföringsträning genom anpassning av de sista lagren av nätverket. Med överföringsträning observeras en minskning av felet mätt som eukilidskt avstånd för de generiska modellerna inom 12-21%, vilket motsvarar de bästa nuvarande modellerna. För den bäst presterande kalibrerade modellen uppmäts medelfelet 29,53mm och medianfelet 22,77mm. Dock leder kalibrering av regionella sannolikhetsbaserade blickapproximationsmodeller till en försämring av prestanda jämfört med de generiska modellerna. Slutsatsen är att överföringsträning är en legitim kalibreringsansats för att förbättra prestanda hos CNN-baserade bildbaserad blickapproximationsmodeller.
|
Page generated in 0.0938 seconds