• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da aplicação de ultrassom na medição de tensões em estruturas de concreto / Study of application of ultrasound to measure stresses in concrete structures

Schiavon, Karen Fernanda Bompan 22 June 2015 (has links)
Os ensaios não destrutivos visam avaliar um elemento sem gerar danos a ele com a técnica empregada. Um tipo de ensaio não destrutivo é o método da velocidade do pulso de ondas ultrassônicas. Este método é comumente utilizado para determinar propriedades elásticas de um dado material e verificar danos no interior dos elementos estudados. Outra aplicação do ultrassom é a medição do nível de tensão num material por meio da propagação das ondas ultrassônicas, tendo como base a teoria da acustoelasticidade. Entretanto, o uso do ultrassom para esta finalidade ainda é pouco difundido, principalmente na aplicação em estruturas de concreto. Este trabalho teve como objetivo estudar a possibilidade de medir tensões em estruturas de concreto com o uso do ultrassom. Para tanto, foram realizados ensaios de compressão uniaxial em prismas de concreto. Durante os ensaios, foram emitidas ondas ultrassônicas nos elementos para cada nível de tensão aplicada no material. A partir destes ensaios, foi feito um estudo do comportamento acustoelástico do concreto. Verificou-se que as velocidades das ondas ultrassônicas variaram em função da intensidade das tensões normais de compressão existentes nos corpos de prova. Com base na variação das velocidades, os coeficientes acustoelásticos do concreto de cada prisma foram determinados e relacionados com propriedades do concreto. Verificou-se a possibilidade de se estimar o nível mínimo de tensão em determinadas estruturas de concreto a partir do conhecimento de seus coeficientes acustoelásticos. Concluiu-se que é possível estimar tensões em estruturas de concreto utilizando o ultrassom. / Nondestructive tests aim to analyze an element generating no damages. The pulse velocity of ultrasonic waves method is a type of nondestructive test. This method is commonly used to determine elastic properties of materials and to verify damages inside studied elements. Another application for ultrasound is the measurement of stress level in a material by means of propagation of ultrasonic waves. This application is based on the theory of acoustoelasticity. However, the use of ultrasound is still unusual for this purpose, mainly in application in concrete structures. This work intended to study the possibility of measuring stresses in concrete structures with the use of ultrasound. Uniaxial compression tests were performed on concrete prisms. During tests, ultrasonic waves were propagated in elements for each level of applied stress in the material. Then, a study about acoustoelastic behavior of concrete was performed. It was verified that the velocities of ultrasonic waves changed according to the intensity of normal compressive stresses there were in the specimens. Based on the variation of velocities, the acoustoelastic coefficients of concrete were determined for each prism. The coefficients were related with properties of concrete. The possibility of estimating the minimum level of stress in certain structures of concrete from their acoustoelastic coefficients was verified. It was concluded it is possible to estimate stresses in concrete structures using ultrasound.
2

Estudo da aplicação de ultrassom na medição de tensões em estruturas de concreto / Study of application of ultrasound to measure stresses in concrete structures

Karen Fernanda Bompan Schiavon 22 June 2015 (has links)
Os ensaios não destrutivos visam avaliar um elemento sem gerar danos a ele com a técnica empregada. Um tipo de ensaio não destrutivo é o método da velocidade do pulso de ondas ultrassônicas. Este método é comumente utilizado para determinar propriedades elásticas de um dado material e verificar danos no interior dos elementos estudados. Outra aplicação do ultrassom é a medição do nível de tensão num material por meio da propagação das ondas ultrassônicas, tendo como base a teoria da acustoelasticidade. Entretanto, o uso do ultrassom para esta finalidade ainda é pouco difundido, principalmente na aplicação em estruturas de concreto. Este trabalho teve como objetivo estudar a possibilidade de medir tensões em estruturas de concreto com o uso do ultrassom. Para tanto, foram realizados ensaios de compressão uniaxial em prismas de concreto. Durante os ensaios, foram emitidas ondas ultrassônicas nos elementos para cada nível de tensão aplicada no material. A partir destes ensaios, foi feito um estudo do comportamento acustoelástico do concreto. Verificou-se que as velocidades das ondas ultrassônicas variaram em função da intensidade das tensões normais de compressão existentes nos corpos de prova. Com base na variação das velocidades, os coeficientes acustoelásticos do concreto de cada prisma foram determinados e relacionados com propriedades do concreto. Verificou-se a possibilidade de se estimar o nível mínimo de tensão em determinadas estruturas de concreto a partir do conhecimento de seus coeficientes acustoelásticos. Concluiu-se que é possível estimar tensões em estruturas de concreto utilizando o ultrassom. / Nondestructive tests aim to analyze an element generating no damages. The pulse velocity of ultrasonic waves method is a type of nondestructive test. This method is commonly used to determine elastic properties of materials and to verify damages inside studied elements. Another application for ultrasound is the measurement of stress level in a material by means of propagation of ultrasonic waves. This application is based on the theory of acoustoelasticity. However, the use of ultrasound is still unusual for this purpose, mainly in application in concrete structures. This work intended to study the possibility of measuring stresses in concrete structures with the use of ultrasound. Uniaxial compression tests were performed on concrete prisms. During tests, ultrasonic waves were propagated in elements for each level of applied stress in the material. Then, a study about acoustoelastic behavior of concrete was performed. It was verified that the velocities of ultrasonic waves changed according to the intensity of normal compressive stresses there were in the specimens. Based on the variation of velocities, the acoustoelastic coefficients of concrete were determined for each prism. The coefficients were related with properties of concrete. The possibility of estimating the minimum level of stress in certain structures of concrete from their acoustoelastic coefficients was verified. It was concluded it is possible to estimate stresses in concrete structures using ultrasound.
3

Comparative Investigation of Detection Techniques for Chloride-induced Corrosion of Loaded Reinforced Concrete Slabs

Chabi, Parham 21 August 2012 (has links)
This study involved a comparative investigation of chloride-induced corrosion detection techniques on loaded reinforced concrete slabs which were exposed to deicing salts and wetting-drying cycles to simulate typical aggressive environments in cold climates. The studied techniques involved linear polarization technique, galvanostatic pulse technique, electrochemical impedance spectroscopy, half-cell potential and concrete electrical resistivity mapping. The results showed that concrete quality and moisture content have a direct effect on corrosion activity, and these properties are represented well with concrete electrical resistivity. The galvanostatic pulse technique was shown to correlate well with electrochemical impedance spectroscopy, which was used as a benchmark for corrosion rate measurements in this study; however, the galvanostatic pulse technique was not capable of detecting corrosion activity in saturated concrete accurately. The results of this research do not support the criteria provided by the ASTM C876-09 standard for using half-cell potentials to estimate the probability of reinforcing steel corrosion in reinforced concrete structures.
4

Comparative Investigation of Detection Techniques for Chloride-induced Corrosion of Loaded Reinforced Concrete Slabs

Chabi, Parham 21 August 2012 (has links)
This study involved a comparative investigation of chloride-induced corrosion detection techniques on loaded reinforced concrete slabs which were exposed to deicing salts and wetting-drying cycles to simulate typical aggressive environments in cold climates. The studied techniques involved linear polarization technique, galvanostatic pulse technique, electrochemical impedance spectroscopy, half-cell potential and concrete electrical resistivity mapping. The results showed that concrete quality and moisture content have a direct effect on corrosion activity, and these properties are represented well with concrete electrical resistivity. The galvanostatic pulse technique was shown to correlate well with electrochemical impedance spectroscopy, which was used as a benchmark for corrosion rate measurements in this study; however, the galvanostatic pulse technique was not capable of detecting corrosion activity in saturated concrete accurately. The results of this research do not support the criteria provided by the ASTM C876-09 standard for using half-cell potentials to estimate the probability of reinforcing steel corrosion in reinforced concrete structures.
5

Comparative Investigation of Detection Techniques for Chloride-induced Corrosion of Loaded Reinforced Concrete Slabs

Chabi, Parham January 2012 (has links)
This study involved a comparative investigation of chloride-induced corrosion detection techniques on loaded reinforced concrete slabs which were exposed to deicing salts and wetting-drying cycles to simulate typical aggressive environments in cold climates. The studied techniques involved linear polarization technique, galvanostatic pulse technique, electrochemical impedance spectroscopy, half-cell potential and concrete electrical resistivity mapping. The results showed that concrete quality and moisture content have a direct effect on corrosion activity, and these properties are represented well with concrete electrical resistivity. The galvanostatic pulse technique was shown to correlate well with electrochemical impedance spectroscopy, which was used as a benchmark for corrosion rate measurements in this study; however, the galvanostatic pulse technique was not capable of detecting corrosion activity in saturated concrete accurately. The results of this research do not support the criteria provided by the ASTM C876-09 standard for using half-cell potentials to estimate the probability of reinforcing steel corrosion in reinforced concrete structures.
6

<b>Evaluation of the Accuracy of Non-Destructive Testing (NDT) Methods for the Condition Assessment of Bridge Decks</b>

Elijah Donovan Jennings (19334296) 06 August 2024 (has links)
<p dir="ltr">Bridge decks in Indiana face the brunt of the deterioration mechanisms associated with structural deficiencies. These deficiencies do not always present themselves in noticeable ways, however, their detection is imperative to the performance of the deck and the bridges’ overall health. The inspection of these bridge decks presents engineers with not only a timely, but dangerous process as maintenance of traffic (MOT) from the states’ department of transportation (DOT) is not a viable option for most inspections. This results in engineers taking an unnecessary risk to inspect these decks for deteriorations. The most detrimental of these structural deficiencies, delaminations, do not always result in visual confirmation. Leading to more time spent in the roadway trying to sound for these defects. This thesis introduces a state-of-the-art review of previous NDT studies in relation to bridge structures along with the validation of their results. Background information on all testing methods being evaluated will also be provided in this study. This thesis also presents an in depth investigation using multiple consultants and a variety of NDT methods to assess the viability of delamination detection in relation to these methods. These methods were verified through coring at select locations on the deck. This thesis then discusses the practical implications of these NDT methods that provide an accurate level of delamination detection on project and network level inspections.</p>

Page generated in 0.0943 seconds