• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 11
  • 10
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonequilibrium Statistical Thermodynamics at the Nanoscale

Andrieux, David 05 May 2008 (has links)
Motivés par les développements récents dans le domaine des nanosciences, nous étudions les propriétés statistiques et thermodynamiques des systèmes mésoscopiques. En particulier, nous nous concentrons sur les résultats connus sous le nom de théorèmes de fluctuation. Ces relations donnent des prédictions sur le comportement de différents quantités dynamiques dans des situations loin de l'équilibre, tout en tenant compte des fluctuations de l'évolution temporelle. La première partie de notre étude est consacrée aux relations existants entre les fluctuations et la théorie de la réponse. Nous commençons par dériver une relation fonctionnelle pour les systèmes quantiques forcés dans le temps qui généralise l'égalité de Jarzynski et dont l'expansion en l'intensité du forçage permet de retrouver les résultats de la réponse linéaire. Nous poursuivons ensuite ces considérations en nous intéressant aux états stationnaires de non-équilibre. Ceci est réalisé dans le cadre des processus stochastiques, dans lequel nous dérivons une relation de fluctuation pour les courants de non-équilibre traversant le système. Cette relation lie explicitement les fluctuations aux forces thermodynamiques, ce qui nous permet de développer ses conséquences au niveau de la théorie de la réponse non-linéaire. De cette manière, nous obtenons de nouvelles relations liant fluctuations et coefficients de réponse dans le régime non-linéaire. Dans la deuxième partie de ce travail, nous développons une connexion récente liant l'irréversibilité au désordre dynamique. Nous présentons des résultats expérimentaux montrant que la production d'entropie s'exprime comme la différence de deux quantités mesurant la brisure de symétrie sous renversement du temps au niveau du désordre temporel. Nous étudions ensuite les conséquences de cette relation dans le contexte de l'énergétique du traitement de l'information. En particulier, nous présentons une généralisation du principe de Landauer pour l'effaçage d'information. De la même manière, nous relions la dissipation à la génération d'information par les entités biologiques.
2

Thermal and Mechanical Response of Curved Composite Panels

Breivik, Nicole L. 12 June 2003 (has links)
Curved panels constructed of laminated graphite-epoxy composite material are of potential interest in airframe fuselage applications. An understanding of structural response at elevated temperatures is required for anticipated future high speed aircraft applications. This study concentrates on the response of unstiffened, curved composite panels subjected to combinations of thermal and mechanical loading conditions. Mechanical loading is due to compressive end-shortening and thermal loading is due to a uniform temperature increase. Thermal stresses, which are induced by mechanical restraints against thermal expansions or contractions, cause buckling and postbuckling panel responses. Panels with three different lamination sequences are considered, including a quasi-isotropic laminate, an axially soft laminate, and an axially stiff laminate. These panels were chosen because they exhibit a range of stiffnesses and a wide variation in laminate coefficients of thermal expansion. The panels have dimensions of 10 in. by 10 in. with a base radius of 60 in. The base boundary conditions are clamped along the curved ends, and simply supported along the straight edges. Three methods are employed to study the panel response, including a geometrically nonlinear Rayleigh-Ritz solution, a finite element solution using the commercially available code STAGS, and an experimental program. The effects of inplane boundary conditions and radius of curvature are studied analytically, along with consideration of order of application in combined loading. A substantial difference is noted in the nonlinear load vs. axial strain responses of panels loaded in end-shortening and panels loaded with uniform temperature change, depending on the specific lamination sequence, boundary conditions, and radius of curvature. Experiments are conducted and results are presented for both room temperature end-shortening tests and elevated temperature tests with accompanying end-shortening. The base finite element model is modified to include measured panel thicknesses, boundary conditions representative of the experimental apparatus, measured initial geometric imperfections, and measured temperature gradients. With these modifications, and including an inherent end displacement of the panel present during thermal loading, good correlation is obtained between the experimental and numerically predicted load vs. axial strain responses from initial loading through postbuckling. / Ph. D.
3

Prebuckling, Buckling, and Postbuckling Response of Segmented Circular Composite Cylinders

Riddick, Jaret Cleveland 07 December 2001 (has links)
Discussed is a numerical and experimental characterization of the response of small-scale fiber-reinforced composite cylinders constructed to represent a fuselage design whereby the crown and keel consist of one laminate stacking sequence and the two sides consist of another laminate stacking sequence. This construction is referred to as a segmented cylinder. The response to uniform axial endshortening is discussed. Numerical solutions for the nonlinear prebuckling, buckling, and postbuckling responses are compared to experimental results. Focus is directed at the investigation of two specific cylinder configurations, referred to as axially-stiff and circumferentially-stiff cylinders. Small-scale cylinders, each having a nominal radius of 5 in., were fabricated on a mandrel by splicing adjacent segments together to form 0.5 in. overlaps. Finite-element models of both cylinder configurations, including the overlap regions, are developed using the STAGS finite-element code. Perfectly circular cylinder models are considered, as are models which include the measured geometry of the specimens as an imperfection. Prebuckling predictions show that the segmented cylinder response is characterized by the existence of circumferential displacement, and an axial boundary layer accompanied by circumferential gradients in radial displacement. Experimental measurements, taken with strain gages and displacement transducers, confirm these numerical findings. As the endshortening approaches the critical, or buckling, values, the response of the cylinders is characterized by wrinkling in the axial direction. In the axially-stiff cylinder, the crown and keel segments wrinkle, while in the circumferentially-stiff cylinder the side segments wrinkle. Experimental images taken from Moire interferometry show this response in the circumferentially-stiff cylinder. Four methods are used to predict the buckling values of endshortening and load for both cylinders, and the four values are in good agreement. The experimentally-measured buckling conditions, however, show that the models overpredict buckling values. For the axially-stiff cylinder, the difference could be due to the fact material failure not included in the model plays a role in the cylinder response. For the circumferentially-stiff cylinder, the difference is definitely due to material failure characteristics not included in the model. The predicted postbuckling response of the segmented cylinders is shown to be dominated by the existence of inward dimples in some or all of the segments. For the axially-stiff cylinder, the as-predicted dimpled crown and keel configuration is observed in the experiment but at a load 12 percent below predicted values. For the circumferentially-stiff cylinder material failure in the linear prebuckling range of response triggered buckling that resembled the predicted circumferential rings of dimples, but at a load 31 percent below predictions. Finally, it is shown that the effect of including the measured imperfections in the model has little observable effect on the circumferentially-stiff cylinder. For the axially-stiff cylinder the inclusion of the imperfections is found to effect the transition from buckling to postbuckling, but ultimately has little effect on postbuckling deformations. / Ph. D.
4

Gust Load Alleviation for an Aeroelastic System Using Nonlinear Control

Lucas, Amy Marie 2009 August 1900 (has links)
The author develops a nonlinear longitudinal model of an aircraft modeled by rigid fuselage, tail, and wing, where the wing is attached to the fuselage with a torsional spring. The main focus of this research is to retain the full nonlinearities associated with the system and to perform gust load alleviation for the model by comparing the impact of a proportional-integral- lter nonzero setpoint linear controller with control rate weighting and a nonlinear Lyapunov-based controller. The four degree of freedom longitudinal system under consideration includes the traditional longitudinal three degree of freedom aircraft model and one additional degree of freedom due to the torsion from the wing attachment. Computational simulations are performed to show the aeroelastic response of the aircraft due to a gust load disturbance with and without control. Results presented in this thesis show that the linear model fails to capture the true nonlinear response of the system and the linear controller based on the linear model does not stabilize the nonlinear system. The results from the Lyapunov-based control demonstrate the ability to stabilize the nonlinear response, including the presence of an LCO, and emphasize the importance of examining the fully nonlinear system with a nonlinear controller.
5

Extraction of the second-order nonlinear response from model test data in random seas and comparison of the Gaussian and non-Gaussian models

Kim, Nungsoo 12 April 2006 (has links)
This study presents the results of an extraction of the 2nd-order nonlinear responses from model test data. Emphasis is given on the effects of assumptions made for the Gaussian and non-Gaussian input on the estimation of the 2nd-order response, employing the quadratic Volterra model. The effects of sea severity and data length on the estimation of response are also investigated at the same time. The data sets used in this study are surge forces on a fixed barge, a surge motion of a compliant mini TLP (Tension Leg Platform), and surge forces on a fixed and truncated column. Sea states are used from rough sea (Hs=3m) to high sea (Hs=9m) for a barge case, very rough sea (Hs=3.9m) for a mini TLP, and phenomenal sea (Hs=15m) for a truncated column. After the estimation of the response functions, the outputs are reconstructed and the 2nd order nonlinear responses are extracted with all the QTF distributed in the entire bifrequency domain. The reconstituted time series are compared with the experiment in both the time and frequency domains. For the effects of data length on the estimation of the response functions, 3, 15, and 40- hour data were investigated for a barge, but 3-hour data was used for a mini TLP and a fixed and truncated column due to lack of long data. The effects of sea severity on the estimation of the response functions are found in both methods. The non-Gaussian method for estimation is more affected by data length than the Gaussian method.
6

Evaluation Of Pushover Analysis Procedures For Frame Structures

Oguz, Sermin 01 May 2005 (has links) (PDF)
Pushover analysis involves certain approximations and simplifications that some amount of variation is always expected to exist in seismic demand prediction of pushover analysis. In literature, some improved pushover procedures have been proposed to overcome the certain limitations of traditional pushover procedures. The effects and the accuracy of invariant lateral load patterns utilised in pushover analysis to predict the behavior imposed on the structure due to randomly selected individual ground motions causing elastic and various levels of nonlinear response were evaluated in this study. For this purpose, pushover analyses using various invariant lateral load patterns and Modal Pushover Analysis were performed on reinforced concrete and steel moment resisting frames covering a broad range of fundamental periods. Certain response parameters predicted by each pushover procedure were compared with the &#039 / exact&#039 / results obtained from nonlinear dynamic analysis. The primary observations from the study showed that the accuracy of the pushover results depends strongly on the load path, properties of the structure and the characteristics of the ground motion. Pushover analyses were performed by both DRAIN-2DX and SAP2000. Similar pushover results were obtained from the two different softwares employed in the study provided that similar approach is used in modeling the nonlinear properties of members as well as their structural features. The accuracy of approximate procedures utilised to estimate target displacement was also studied on frame structures. The accuracy of the predictions was observed to depend on the approximations involved in the theory of the procedures, structural properties and ground motion characteristics.
7

Exploring Nonlinear Responses of Quantum Dissipative Systems from Reduced Hierarchy Equations of Motion Approach / 階層型運動方程式による量子散逸系の非線形応答の研究

Sakurai, Atsunori 23 May 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第17771号 / 理博第3894号 / 新制||理||1562(附属図書館) / 30578 / 京都大学大学院理学研究科化学専攻 / (主査)教授 谷村 吉隆, 准教授 安藤 耕司, 教授 寺嶋 正秀 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
8

Comparative Study of Seismic Performance of Reinforced Concrete Buildings designed in accordance with the Seismic Provisions of ASCE 7-10 and IS 1893-2002

Jadhav, Sagar M. 14 October 2013 (has links)
No description available.
9

Bridge Design for Earthquake Fault Crossings – Synthesis of Design Issues and Strategies

Rodriguez, Osmar 01 March 2012 (has links) (PDF)
This research evaluates the seismic demands for a three-span curved bridge crossing fault-rupture zones. Two approximate procedures which have been proved adequate for ordinary straight bridges crossing fault-rupture zones, i.e., the fault-rupture response spectrum analysis (FR-RSA) procedure and the fault-rupture linear static analysis (FR-LSA) procedure, were considered in this investigation. These two procedures estimate the seismic demands by superposing the peak values of quasi-static and dynamic bridge responses. The peak quasi-static response in both methods is computed by nonlinear static analysis of the bridge under the ground displacement offset associated with fault-rupture. In FR-RSA and FR-LSA, the peak dynamic responses are respectively estimated from combination of the peak modal responses using the complete-quadratic-combination rule and the linear static analysis of the bridge under appropriate equivalent seismic forces. The results from the two approximate procedures were compared to those obtained from the nonlinear response history analysis (RHA) which is more rigorous but may be too onerous for seismic demand evaluation. It is shown that the FR-RSA and FR-LSA procedures which require less modeling and analysis efforts provide reasonable seismic demand estimates for practical applications.
10

An Investigation of the Behavior of Structural Systems with Modeling Uncertainties

Hardyniec, Andrew B. 24 March 2014 (has links)
Recent advancements in earthquake engineering have caused a movement toward a probabilistic quantification of the behavior of structural systems. Analysis characteristics, such as ground motion records, material properties, and structural component behavior are defined by probabilistic distributions. The response is also characterized probabilistically, with distributions fitted to analysis results at intensity levels ranging from the maximum considered earthquake ground motion to collapse. Despite the progress toward a probabilistic framework, the variability in structural analysis results due to modeling techniques has not been considered. This work investigates the uncertainty associated with modeling geometric nonlinearities and Rayleigh damping models on the response of planar frames at multiple ground motion intensity levels. First, an investigation is presented on geometric nonlinearity approaches for planar frames, followed by a critical review of current damping models. Three frames, a four-story buckling restrained braced frame, a four-story steel moment resisting frame, and an eight-story steel moment resisting frame, are compared using two geometric nonlinearity approaches and five Rayleigh damping models. Static pushover analyses are performed on the models in the geometric nonlinearities study, and incremental dynamic analyses are performed on all models to compare the response at the design based earthquake ground motion (DBE), maximum considered earthquake ground motion (MCE), and collapse intensity levels. The results indicate noticeable differences in the responses at the DBE and MCE levels and significant differences in the responses at the collapse level. Analysis of the sidesway collapse mechanisms indicates a shift in the behavior corresponding to the different modeling assumptions, though the effects were specific to each frame. The FEMA P-695 Methodology provided a framework that defined the static and dynamic analyses performed during the modeling uncertainties studies. However, the Methodology is complex and the analyses are computationally expensive. To expedite the analyses and manage the results, a toolkit was created that streamlines the process using a set of interconnected modules. The toolkit provides a program that organizes data and reduces mistakes for those familiar with the process while providing an educational tool for novices of the Methodology by stepping new users through the intricacies of the process. The collapse margin ratio (CMR), calculated in the Methodology, was used to compare the collapse behavior of the models in the modeling uncertainties study. Though it provides a simple scalar quantity for comparison, calculation of the CMR typically requires determination of the full set of incremental dynamic analysis curves, which require prohibitively large analysis time for complex models. To reduce the computational cost of calculating the CMR, a new parallel computing method, referred to as the fragility search method, was devised that uses approximate collapse fragility curves to quickly converge on the median collapse intensity value. The new method is shown to have favorable attributes compared to other parallel computing methods for determining the CMR. / Ph. D.

Page generated in 0.0488 seconds