Spelling suggestions: "subject:"nonlinear dpectroscopy"" "subject:"nonlinear espectroscopy""
1 |
A high power, single-mode, tunable laser for optical spectroscopyBultitude, Karen January 2003 (has links)
No description available.
|
2 |
Absorptive And Refractive Optical Nonlinearities In Organic Molecules And SemiconductorsPeceli, Davorin 01 January 2013 (has links)
The main purpose of this dissertation to investigate photophysical properties, third order nonlinearity and free carrier absorption and refraction in organic materials and semiconductors. Special emphasis of this dissertation is on characterization techniques of molecules with enhanced intersystem crossing rate and study of different approaches of increasing triplet quantum yield in organic molecules. Both linear and nonlinear characterization methods are described. Linear spectroscopic characterization includes absorption, fluorescence, quantum yield, anisotropy, and singletoxygen generation measurements. Nonlinear characterization, performed by picosecond and femtosecond laser systems (single and double pump-probe and Z-scan measurements), includes measurements of the triplet quantum yields, excited-state absorption, two-photon absorption, nonlinear refraction and singlet and triplet-state lifetimes. The double pump-probe technique is a variant of the standard pump-probe method but uses two pumps instead of one to create two sets of initial conditions for solving the rate equations allowing a unique determination of singlet- and triplet-state absorption parameters and transition rates. The advantages and limitations of the the double pump-probe technique are investigated theoretically and experimentally, and the influences of several experimental parameters on its accuracy are determined. The accuracy with which the double pump-probe technique determines the triplet-state parameters improves when the fraction of the population in the triplet state relative to the ground state is increased. Although increased accuracy is in iv principle achievable by increasing the pump fluence in the reverse saturable absorption range, it is shown that the DPP is optimized by working in the saturable absorption regime. Two different approaches to increase intersystem crossing rates in polymethine-like molecules are presented: traditional heavy atom substitution and molecular levels engineering. Linear and nonlinear optical properties of a series of polymethine dyes with Br- and Se- atoms substitution, and a series of new squaraine molecules, where one or two oxygen atoms in a squaraine bridge are replaced with sulfur atoms, are investigated. A consequence of the oxygento-sulfur substitution in squaraines is the inversion of their lowest lying ππ* and nπ* states leading to a significant reduction of singlet-triplet energy difference and opening of an additional intersystem channel of relaxation. Experimental studies show that triplet quantum yields for polymethine dyes with heavy-atom substitutions are small (not more than 10%), while for sulfurcontaining squaraines these values reach almost unity. Experimental results are in agreement with density functional theory calculations allowing determination of the energy positions, spinorbital coupling, and electronic configurations of the lowest electronic transitions. For three different semiconductors: GaAs, InP and InAsP two photon absorption, nonlinear refraction and free carrier absorption and refraction spectrums are measured using Zscan technique. Although two photon absorption spectrum agrees with the shape of theoretical prediction, values measured with picosecond system are off by the factor of two. Nonlinear refraction and free carrier nonlinearities are in relatively good agreement with theory. Theoretical values of the third order nonlinearities in GaAs are additionally confirmed with femtosecond Z-scan measurements. v Due to large spectral bandwidth of femtosecond laser, three photon absorption spectrum of GaAs was additionally measured using picosecond Z-scan. Again, spectral shape is in excellent agreement with theory however values of three photon absorption cross sections are larger than theory predicts.
|
3 |
Observation of the fundamental exciton in low-temperature grown GaAs using four-wave mixing spectroscopyWebber, Daniel 30 October 2013 (has links)
The nonlinear optical response of low-temperature (LT) grown GaAs were studied
using four-wave mixing techniques. Through measurements of the four-wave mixing
response as a function of pulse delay and photon energy, a strong optical response
was identi ed associated with the fundamental band gap exciton. These experiments
therefore demonstrated the importance of the exciton in understanding the ultrafast
nonlinear optical response of LT-GaAs despite the absence of any evidence of the
exciton in past linear absorption studies in this material. Measurement of the fourwave
mixing response as a function of pulse delay and the polarization states of the
two excitation pulses shows that the dominant contribution to the exciton signal is
tied to excitation-induced dephasing. Four-wave mixing experiments in which the
sample is exposed to an additional laser pulse indicate that the exciton signal may be
strongly diminished due to a combination of screening and a reduction in the total
dephasing time. The short temporal duration of the above e ect provides evidence
of an ultrashort (< 100 fs) electron trapping time in this system tied to arsenic
related defects introduced during low-temperature growth. These ndings are of
importance to the understanding of the optical properties of LT-GaAs and will aid
in the development of optoelectronic devices using this material system.
|
4 |
Caracterização espectroscópica da dinâmica eletrônica em moléculas de porfirina / Spectroscopic characterization of electronic dynamic in porphyrin moleculeSouza, Tiago Gualberto Bezerra de 19 March 2015 (has links)
Neste trabalho descreve-se técnicas experimentais envolvendo espectroscopias ópticas lineares e não-lineares capazes de caracterizar efeitos de estados excitado singleto e tripleto em moléculas orgânicas fluorescentes. Efeitos como a absorção de estado excitado e a troca de paridade eletrônica singleto-tripleto, tem ampla aplicação em diversas áreas de interesse humano. Logo, se faz necessário o estudo e desenvolvimento de materiais com essas características, tanto quanto o aprimoramento dos métodos de caracterização dessas propriedades. Este trabalho também consta com o estudo das propriedades espectroscópicas de moléculas de porfirinina, as quais estão entre as principais moléculas utilizadas nas aplicações. Assim, submeteu-se um conjunto composto por vinte e uma moléculas, todas derivadas da molécula de porfirina e com quatro radicais acoplados a ela, às seguintes técnicas experimentais: Varredura-Z absortiva e variações dessa técnica, desenvolvidas no grupo de Fotônica-IFSC, como a Varredura-Z por Trem de Pulsos (ZTP) e a medida da Fluorescência por Trem de Pulsos (FTP), afim de caracterizar os parâmetros espectroscópicos de cada amostra correspondentes ao modelo de Jablonski com cinco níveis de energia. A caracterização desse conjunto de porfirinas permitiu a avaliação da mudança na dinâmica populacional eletrônica causada por determinados radicais, que podem favorecer um determinado efeitos e, assim, otimizar uma molécula a uma dada finalidade. / This work describes experimental techniques in linear and nonlinear optical spectroscopy able to characterize excited state singlet and triplet optical effects of fluorescent organic molecules. Effects like excited state absorption and intersystem crossing between singlet and triplet states have a broad application in several areas of human interest. So, it is useful the study and development of materials with those properties, as much as the characterization methods of them. It is also included in this work the study of the spectroscopic properties of porphyrin molecules, which are among the most used in the applications. Thus, a set of twenty one porphyrin based molecules were probed with the follow spectroscopic techniques: Absorptive Z-SCAN and variations of that technique developed in the IFSC-Photonics\' Group as Pulse Train Z-SCAN and Fluorescence by Pulse Train, in order of characterize the spectroscopic parameters corresponding to a five energy level Jablonski diagram. The characterization of the whole set of porphyrins allowed a study of the change in electronic population dynamics in the porphyrin molecule caused by a specific radical, which may privilege a certain kind of effect and, consequently, manufacturing a molecule for a given application.
|
5 |
Spectroscopie cohérente des excitons dans des nanostructures semi-conductrices innovantes / Coherent spectroscopy of exciton in innovative semi-conducting nanostructureDelmonte, Valentin 12 June 2018 (has links)
L'évolution des technologies liées aux semi-conducteurs a amené à l'étude de la cohérence des Bits Quantiques (Qbits) dans l'objectif de réduction de la taille des composants. A l'aide de la spectroscopie cohérente non-linéaire, j'ai pu étudier les propriétés de cohérences des excitons confinés dans des boites quantiques (BQ), eux-même intégrées dans différentes nano-structures. L'intérêt des nano-structures est d'augmenter le ratio signal-sur-bruit, indispensable dans notre expérience. L'utilisation des nano-structures est aussi indispensable dans l'objectif de la mise en place d'un couplage radiatif à longue distance entre 2 BQs. Il fut tout d'abord nécessaire de caractériser des nano-structures déterministes permettant d'augmenter le rendement d 'échantillons utilisables en conservant l'intensité de signal émit par les BQs. De plus, j'ai développé mon expérience afin d'affiner notre capacité d'étudier le couplage proches entre BQs intégrées dans une micro-cavité. Ensuite Nous avons testé plusieurs formes de nano-structures 1D (trompettes et ridges) afin de d'amplifier le couplage à longue distance et et comprendre les obstacles auxquels nous auront à faire face . Enfin une caractérisation de nouveaux matériaux 2D fut réalisée, en vue de d'améliorer notre compréhension des dynamiques des excitons dans ce type de matériaux. / The evolution of technologies related to semiconductors has led to the study of the coherence of Quantum Bits (Qbits) in order to reduce the size of the components. Using nonlinear coherent spectroscopy, I was able to study the coherence properties of excitons confined in quantum dots (BQs), themselves integrated into different nano-structures. The interest of nanostructures is to increase the signal-to-noise ratio, essential in our experience. The use of nano-structures is also essential for the purpose of setting up a long-distance radiative coupling between 2 BQs.First of all, it was necessary to characterize deterministic nano-structures that make it possible to increase the yield of usable samples by preserving the signal intensity emitted by the BQs. In addition, I developed my experience to refine our ability to study close-coupling between BQs embedded in a micro-cavity. Then we tested several forms of 1D nano-structures (trumpets and ridges) in order to amplify the long-distance coupling and to understand the obstacles we will have to face. Finally a characterization of new 2D materials was realized, in order to improve our understanding of exciton dynamics in this type of materials.
|
6 |
A Theoretical Description of the Vibrational Sum Frequency Generation Spectroscopy of InterfacesPerry, Angela S 06 July 2005 (has links)
Our work investigates theoretical approximations to the interface specific sum frequency generation (SFG) spectra at aqueous interfaces constructed using time correlation function (TCF) and instantaneous normal mode (INM) methods. Both approaches lead to signals in excellent agreement with experimental measurements. This work demonstrates how TCF and INM methods can be used in a complementary fashion to describe interfacial vibrational spectroscopy.
Our approach is to compare TCF spectra with experiment to establish that our molecular dynamics (MD) methods can reliably describe the system of interest. We then employ INM methods to analyze the molecular and dynamical basis for the observed spectroscopy. We have been able to elucidate, on a molecularly detailed basis, a number of interfacial line shapes, most notably the origin of the complex O-H stretching SFG signal, and the identity of several intermolecular modes in the SFG spectra for the water/vapor interface. The success of both approaches suggests that theory can play crucial role in interpreting SFG spectroscopy at more complex interfaces.
|
7 |
Molecular dynamics and time correlation function theoriesDeVane, Russell H 01 June 2005 (has links)
The research presented in this thesis makes use of theoretical/computational techniques to calculate nonlinear spectroscopic signals and molecular volumes. These techniques have become more practical with advances in computational resources and now are an integral part of research in these areas. Preliminary results allude to the power of these techniques when applied to relevant problems and suggest that much progress can be made in understanding the complex nature of nonlinear spectroscopic signals and molecular volume contributions. The nonlinear spectroscopy work involves writing the quantum mechanical response functions in terms of classical time correlation functions which are amenable to calculation using classical molecular dynamics. The response functions reported in this thesis include the fifth order response function, probed in the fifth order Raman experiment, and the third order response function probed in the two dimensional infrared experiment. The molecular volume calculations make use of modern algorithms used in molecular dynamics simulations to calculate the full thermodynamic volumes of molecules.
|
8 |
Construction and application of computationally tractable theories on nonlinear spectroscopyNeipert, Christine L 01 June 2007 (has links)
Nonlinear optical processes probe systems in unique manners. The signals obtained from nonlinear spectroscopic experiments are often significantly different than more standard linear techniques, and their intricate nature can make it difficult to interpret the experimental results. Given the complexity of many nonlinear lineshapes, it is to the benefit of both the theoretical and experimental communities to have molecularly detailed computationally amenable theories of nonlinear spectroscopy. Development of such theories, bench marked by careful experimental investigations, have the ability to understand the origins of a given spectroscopic lineshape with atomistic resolution. With this goal in mind, this manuscript details the development of several novel theories of nonlinear surface specific spectroscopies. Spectroscopic responses are described by quantum mechanical quantities. This work shows how well defined classical limits of these expressions can be obtained, and unlike the formal quantum mechanical expressions, the derived expressions comprise a computationally tractable theory. Further, because the developed novel theories have a well defined classical limit, there is a quantum classical correspondence. Thus, semiclassical computational techniques can capture the true physics of the given nonlinear optical process. The semiclassical methodology presented in this manuscript consists of two primary components - classical molecular dynamics and a spectroscopic model. For each theory of nonlinear spectroscopy that is developed, a computational implementation methodology is discussed and/or tested.
|
9 |
Practical applications of molecular dynamics techniques and time correlation function theoriesKasprzyk, Christina Ridley 01 June 2006 (has links)
The original research outlined in this dissertation involves the use of novel theoretical and computational methods in the calculation of molecular volume changes and non-linear spectroscopic signals, specifically two-dimensional infrared (2D-IR) spectroscopy. These techniques were designed and implemented to be computationally affordable, while still providing a reliable picture of the phenomena of interest. The computational results presented demonstrate the potential of these methods to accurately describe chemically interesting systems on a molecular level. Extended system isobaric-isothermal (NPT) molecular dynamics techniques were employed to calculate the thermodynamic volumes of several simple model systems, as well as the volume change associated with the trans-cis isomerization of azobenzene, an event that has been explored experimentally using photoacoustic calorimetry (PAC). The calculated volume change was found to be in excellent agreement with the experimental result. In developing a tractable theory of two-dimensional infrared spectroscopy, the third-order response function contributing to the 2D-IR signal was derived in terms of classical time correlation functions (TCFs), entities amenable to calculation via classical molecular dynamics techniques. The application of frequency-domain detailed balance relationships, as well as harmonic and anharmonic oscillator approximations, to the third-order response function made it possible to calculate it from classical molecular dynamics trajectories. The finished theory of two-dimensional infrared spectroscopy was applied to two simple model systems, neat water and 1,3-cyclohexanedione solvated in deuterated chloroform, with encouraging preliminary results.
|
10 |
Caracterização espectroscópica da dinâmica eletrônica em moléculas de porfirina / Spectroscopic characterization of electronic dynamic in porphyrin moleculeTiago Gualberto Bezerra de Souza 19 March 2015 (has links)
Neste trabalho descreve-se técnicas experimentais envolvendo espectroscopias ópticas lineares e não-lineares capazes de caracterizar efeitos de estados excitado singleto e tripleto em moléculas orgânicas fluorescentes. Efeitos como a absorção de estado excitado e a troca de paridade eletrônica singleto-tripleto, tem ampla aplicação em diversas áreas de interesse humano. Logo, se faz necessário o estudo e desenvolvimento de materiais com essas características, tanto quanto o aprimoramento dos métodos de caracterização dessas propriedades. Este trabalho também consta com o estudo das propriedades espectroscópicas de moléculas de porfirinina, as quais estão entre as principais moléculas utilizadas nas aplicações. Assim, submeteu-se um conjunto composto por vinte e uma moléculas, todas derivadas da molécula de porfirina e com quatro radicais acoplados a ela, às seguintes técnicas experimentais: Varredura-Z absortiva e variações dessa técnica, desenvolvidas no grupo de Fotônica-IFSC, como a Varredura-Z por Trem de Pulsos (ZTP) e a medida da Fluorescência por Trem de Pulsos (FTP), afim de caracterizar os parâmetros espectroscópicos de cada amostra correspondentes ao modelo de Jablonski com cinco níveis de energia. A caracterização desse conjunto de porfirinas permitiu a avaliação da mudança na dinâmica populacional eletrônica causada por determinados radicais, que podem favorecer um determinado efeitos e, assim, otimizar uma molécula a uma dada finalidade. / This work describes experimental techniques in linear and nonlinear optical spectroscopy able to characterize excited state singlet and triplet optical effects of fluorescent organic molecules. Effects like excited state absorption and intersystem crossing between singlet and triplet states have a broad application in several areas of human interest. So, it is useful the study and development of materials with those properties, as much as the characterization methods of them. It is also included in this work the study of the spectroscopic properties of porphyrin molecules, which are among the most used in the applications. Thus, a set of twenty one porphyrin based molecules were probed with the follow spectroscopic techniques: Absorptive Z-SCAN and variations of that technique developed in the IFSC-Photonics\' Group as Pulse Train Z-SCAN and Fluorescence by Pulse Train, in order of characterize the spectroscopic parameters corresponding to a five energy level Jablonski diagram. The characterization of the whole set of porphyrins allowed a study of the change in electronic population dynamics in the porphyrin molecule caused by a specific radical, which may privilege a certain kind of effect and, consequently, manufacturing a molecule for a given application.
|
Page generated in 0.0714 seconds