• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Specialized Agents Task Allocation in Autonomous Multi-Robot Systems

AL-Buraiki, Omar S. M. 25 November 2020 (has links)
With the promise to shape the future of industry, multi-agent robotic technologies have the potential to change many aspects of daily life. Over the coming decade, they are expected to impact transportation systems, military applications such as reconnaissance and surveillance, search-and-rescue operations, or space missions, as well as provide support to emergency first responders. Motivated by the latest developments in the field of robotics, this thesis contributes to the evolution of the future generation of multi-agent robotic systems as they become smarter, more accurate, and diversified in terms of applications. But in order to achieve these goals, the individual agents forming cooperative robotic systems need to be specialized in what they can accomplish, while ensuring accuracy and preserving the ability to perform diverse tasks. This thesis addresses the problem of task allocation in swarm robotics in the specific context where specialized capabilities of the individual agents are considered. Based on the assumption that each individual agent possesses specialized functional capabilities and that the expected tasks, which are distributed in the surrounding environment, impose specific requirements, the proposed task allocation mechanisms are formulated in two different spaces. First, a rudimentary form of the team members’ specialization is formulated as a cooperative control problem embedded in the agents’ dynamics control space. Second, an advanced formulation of agents’ specialization is defined to estimate the individual agents’ task allocation probabilities in a dedicated specialization space, which represents the core contribution of this thesis to the advancement and practice in the area of swarm robotics. The original task allocation process formulated in the specialization space evolves through four stages of development. First, a task features recognition stage is conceptually introduced to leverage the output of a sensing layer embedded in robotic agents to drive the proposed task allocation scheme. Second, a matching scheme is developed to best match each agent’s specialized capabilities with the corresponding detected tasks. At this stage, a general binary definition of agents’ specialization serves as the basis for task-agent association. Third, the task-agent matching scheme is expanded to an innovative probabilistic specialty-based task-agent allocation framework to generalize the concept and exploit the potential of agents’ specialization consideration. Fourth, the general framework is further refined with a modulated definition of the agents’ specialization based on their mechanical, physical structure, and embedded resources. The original framework is extended and a prioritization layer is also introduced to improve the system’s response to complex tasks that are characterized based on the recognition of multiple classes. Experimental validation of the proposed specialty-based task allocation approach is conducted in simulation and on real-world experiments, and the results are presented and discussed in light of potential applications to demonstrate the effectiveness and efficiency of the proposed framework.
2

Nonlinear Control and Stability Analysis of Multi-Terminal High Voltage Direct Current Networks / Commande non-linéaire et analyse de stabilité de réseaux multi-terminaux haute tension à courant continu

Chen, Yijing 08 April 2015 (has links)
Cette thèse a été consacrée à l'étude des réseaux multi-terminaux haute tension à courant continu (MTDC). Les principales contributions étaient dans le domaine du contrôle automatique non linéaire, appliquées aux systèmes électriques, électronique de puissance et les sources d'énergie renouvelables. Le travail de recherche a été lancé avec l'intention de combler certaines lacunes entre la théorie et la pratique, en particulier: 1) d'enquêter sur diverses approches de contrôle pour le but d'améliorer la performance des systèmes MTDC; 2) d'établir des connexions entre la conception du contrôle empiriques existantes et analyse théorique; 3) d'améliorer la compréhension du comportement multi-échelle de temps des systèmes MTDC caractérisés par la présence de transitoires lents et rapides en réponse aux perturbations externes. En conséquence, ce travail de thèse peut être mis en trois domaines, à savoir la conception non linéaire de commande de systèmes MTDC, analyse des comportements dynamiques de système MTDC et l'application de systèmes MTDC pour le contrôle de fréquence des systèmes de climatisation. / This dissertation was devoted to the study of multi-terminal high voltage direct current (MTDC) networks. The main contributions were in the field of nonlinear automatic control, applied to power systems, power electronics and renewable energy sources. The research work was started with the intention of filling some gaps between the theory and the practice, in particular: 1) to investigate various control approaches for the purpose of improving the performance of MTDC systems; 2) to establish connections between existing empirical control design and theoretical analysis; 3) to improve the understanding of the multi-time-scale behavior of MTDC systems characterized by the presence of slow and fast transients in response to external disturbances. As a consequence, this thesis work can be put into three areas, namely nonlinear control design of MTDC systems, analysis of MTDC system's dynamic behaviors and application of MTDC systems for frequency control of AC systems.
3

Contrôle automatique de véhicules aériens à voilure fixe / Nonlinear automatic control of fixed-wing aerial vehicles

Kai, Jean-Marie 29 November 2018 (has links)
Cette thèse développe une nouvelle approche de contrôle pour les avions à échelle réduite. Les lois de commande proposées exploitent un modèle non linéaire simple mais pertinent des forces aérodynamiques appliquées à l’aéronef. Ils reposent sur une structure hiérarchique de contrôle non linéaires, et sont synthétisées sur la base d’analyse de stabilité et de convergence théoriques. Ils sont conçus pour fonctionner sur un large domaine de vol. En particulier, ils évitent les singularités associées à la paramétrisation de l'attitude et la direction de la vitesse. Dans un premier temps, le problème de stabilisation de trajectoires de référence est résolu en étendant la méthode du "thrust vectoring", utilisée pour les véhicules à voilure tournante, au cas des aéronefs à voilure fixe. Dans le cas des avions, le principal défi est de prendre en compte les forces aérodynamiques dans la conception des systèmes de commande. Afin de résoudre ce problème, le contrôle proposé est conçu et analysé sur la base du modèle de forces aérodynamique proposé. Le domaine d'utilisation de cette loi de commande est élargi et englobe les trajectoires d'équilibre (trim trajectories) qui sont classiquement utilisées dans la littérature. Cette solution est ensuite adaptée au problème de suivi de chemin, afin de concevoir des lois de guidage cinématique et de contrôle dynamique applicables à presque tout chemin 3D régulier. Les lois de contrôle proposées contiennent des termes intégraux qui robustifient le contrôle vis-à-vis de dynamiques non modélisées. Plusieurs problèmes pratiques sont adressés et les lois de commande proposées sont validées par des simulations du type "hardware-in-the-loop". Enfin, des résultats d'essais en vol illustrent la performance des lois de contrôle proposées. / The present thesis develops a new control approach for scale-model airplanes. The proposed control solutions exploit a simple but pertinent nonlinear model of aerodynamic forces acting on the aircraft. Nonlinear controllers are based on a hierarchical structure, and are derived on the basis of theoretical stability and convergence analyses. They are designed to operate on a large spectrum of operating conditions. In particular, they avoid the singularities associated with the parameterization of the attitude and the heading of the vehicle, and do not rely on a decoupling between longitudinal and lateral dynamics. First, the trajectory tracking problem is addressed by extending the thrust vectoring method used for small rotor vehicles to the case of fixed wing vehicles. In the case of airplanes, the main challenge is to take into account the aerodynamic forces in the design of control systems. In order to solve this problem, the proposed control is designed and analyzed on the basis of the proposed aerodynamic forces model. The flight envelope is thus broadened beyond trim trajectories which are classically used in the literature. This solution is then adapted to the path following problem, and kinematic guidance and dynamic control laws are developed within a single coherent framework that applies to almost any regular 3D path. The proposed control laws incorporate integral terms that robustify the control with respect to unmodelled dynamics. Several practical issues are addressed and the proposed control laws are validated via hardware-in-the-loop simulations. Finally, successful flight test results illustrate the soundness and performance of the proposed control laws.

Page generated in 0.0752 seconds