• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A LiDAR Based Semi-autonomous Collision Avoidance System and the Development of a Hardware-in-the-Loop Simulator to Aid in Algorithm Development and Human Studies

Stevens, Thomas F. 01 December 2015 (has links) (PDF)
In this paper, the architecture and implementation of an embedded controller for a steering based semi-autonomous collision avoidance system on a 1/10th scale model is presented. In addition, the development of a 2D hardware-in-the-loop simulator with vehicle dynamics based on the bicycle model is described. The semi-autonomous collision avoidance software is fully contained onboard a single-board computer running embedded GNU/Linux. To eliminate any wired tethers that limit the system’s abilities, the driver operates the vehicle at a user-control-station through a wireless Bluetooth interface. The user-control-station is outfitted with a game-controller that provides standard steering wheel and pedal controls along with a television monitor equipped with a wireless video receiver in order to provide a real-time driver’s perspective video feed. The hardware-in-the-loop simulator was developed in order to aid in the evaluation and further development of the semi-autonomous collision avoidance algorithms. In addition, a post analysis tool was created to numerically and visually inspect the controller’s responses. The ultimate goal of this project was to create a wireless 1/10th scale collision avoidance research platform to facilitate human studies surrounding driver assistance and active safety systems in automobiles. This thesis is a continuation of work done by numerous Cal Poly undergraduate and graduate students.
2

Contrôle automatique de véhicules aériens à voilure fixe / Nonlinear automatic control of fixed-wing aerial vehicles

Kai, Jean-Marie 29 November 2018 (has links)
Cette thèse développe une nouvelle approche de contrôle pour les avions à échelle réduite. Les lois de commande proposées exploitent un modèle non linéaire simple mais pertinent des forces aérodynamiques appliquées à l’aéronef. Ils reposent sur une structure hiérarchique de contrôle non linéaires, et sont synthétisées sur la base d’analyse de stabilité et de convergence théoriques. Ils sont conçus pour fonctionner sur un large domaine de vol. En particulier, ils évitent les singularités associées à la paramétrisation de l'attitude et la direction de la vitesse. Dans un premier temps, le problème de stabilisation de trajectoires de référence est résolu en étendant la méthode du "thrust vectoring", utilisée pour les véhicules à voilure tournante, au cas des aéronefs à voilure fixe. Dans le cas des avions, le principal défi est de prendre en compte les forces aérodynamiques dans la conception des systèmes de commande. Afin de résoudre ce problème, le contrôle proposé est conçu et analysé sur la base du modèle de forces aérodynamique proposé. Le domaine d'utilisation de cette loi de commande est élargi et englobe les trajectoires d'équilibre (trim trajectories) qui sont classiquement utilisées dans la littérature. Cette solution est ensuite adaptée au problème de suivi de chemin, afin de concevoir des lois de guidage cinématique et de contrôle dynamique applicables à presque tout chemin 3D régulier. Les lois de contrôle proposées contiennent des termes intégraux qui robustifient le contrôle vis-à-vis de dynamiques non modélisées. Plusieurs problèmes pratiques sont adressés et les lois de commande proposées sont validées par des simulations du type "hardware-in-the-loop". Enfin, des résultats d'essais en vol illustrent la performance des lois de contrôle proposées. / The present thesis develops a new control approach for scale-model airplanes. The proposed control solutions exploit a simple but pertinent nonlinear model of aerodynamic forces acting on the aircraft. Nonlinear controllers are based on a hierarchical structure, and are derived on the basis of theoretical stability and convergence analyses. They are designed to operate on a large spectrum of operating conditions. In particular, they avoid the singularities associated with the parameterization of the attitude and the heading of the vehicle, and do not rely on a decoupling between longitudinal and lateral dynamics. First, the trajectory tracking problem is addressed by extending the thrust vectoring method used for small rotor vehicles to the case of fixed wing vehicles. In the case of airplanes, the main challenge is to take into account the aerodynamic forces in the design of control systems. In order to solve this problem, the proposed control is designed and analyzed on the basis of the proposed aerodynamic forces model. The flight envelope is thus broadened beyond trim trajectories which are classically used in the literature. This solution is then adapted to the path following problem, and kinematic guidance and dynamic control laws are developed within a single coherent framework that applies to almost any regular 3D path. The proposed control laws incorporate integral terms that robustify the control with respect to unmodelled dynamics. Several practical issues are addressed and the proposed control laws are validated via hardware-in-the-loop simulations. Finally, successful flight test results illustrate the soundness and performance of the proposed control laws.

Page generated in 0.0822 seconds