• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelos lineares e não lineares de efeitos mistos para respostas censuradas usando as distribuições normal e t-Student multivariadas / Linear and nonlinear mixed-effects models with censored response using the multivariate normal and Student-t distributions

Matos, Larissa Avila, 1987- 20 August 2018 (has links)
Orientador: Víctor Hugo Lachos Dávila / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T06:44:43Z (GMT). No. of bitstreams: 1 Matos_LarissaAvila_M.pdf: 2008810 bytes, checksum: 0aee0c4f4bbf58ba67490d26cdd300ba (MD5) Previous issue date: 2012 / Resumo: Modelos mistos são geralmente usados para representar dados longitudinais ou de medidas repetidas. Uma complicação adicional surge quando a resposta é censurada, por exemplo, devido aos limites de quantificação do ensaio utilizado. Distribuições normais para os efeitos aleatórios e os erros residuais são geralmente assumidas, mas tais pressupostos fazem as inferências vulneráveis, 'a presença de outliers. Motivados por uma preocupação da sensibilidade para potenciais outliers ou dados com caudas mais pesadas do que a normal, pretendemos desenvolver nessa dissertação, inferência para modelos lineares e não lineares de efeito misto censurados (NLMEC / LMEC) com base na distribui ção t- Student multivariada, sendo uma alternativa flexível ao uso da distribuição normal correspondente. Propomos um algoritmo ECM para computar as estimativas de máxima verossimilhança para os NLMEC / LMEC. Este algoritmo utiliza expressões fechadas no passo-E, que se baseia em fórmulas para a média e a variância de uma distribui ção t-multivariada truncada. O algoritmo proposto é implementado, pacote tlmec do R. Também propomos aqui um algoritmo ECM exato para os modelos lineares e não lineares de efeito misto censurados, com base na distribuição normal multivariada, que nos permite desenvolver análise de influência local para modelos de efeito misto com base na esperança condicional da função log-verossilhança dos dados completos. Os procedimentos desenvolvidos são ilustrados com a análise longitudinal da carga viral do HIV, apresentada em dois estudos recentes sobre a AIDS / Abstract: Mixed models are commonly used to represent longitudinal or repeated measures data. An additional complication arises when the response is censored, for example, due to limits of quantification of the assay used. Normal distributions for random effects and residual errors are usually assumed, but such assumptions make inferences vulnerable to the presence of outliers. Motivated by a concern of sensitivity to potential outliers or data with tails longer-than-normal, we aim to develop in this dissertation inference for linear and nonlinear mixed effects models with censored response (NLMEC/LMEC) based on the multivariate Student-t distribution, being a flexible alternative to the use of the corresponding normal distribution. We propose an ECM algorithm for computing the maximum likelihood estimates for NLMEC/LMEC. This algorithm uses closed-form expressions at the E-step, which relies on formulas for the mean and variance of a truncated multivariate-t distribution. The proposed algorithm is implemented in the R package tlmec. We also propose here an exact ECM algorithm for linear and nonlinear mixed effects models with censored response based on the multivariate normal distribution, which enable us to developed local influence analysis for mixed effects models on the basis of the conditional expectation of the complete-data log-likelihood function. The developed procedures are illustrated with two case studies, involving the analysis of longitudinal HIV viral load in two recent AIDS studies / Mestrado / Estatistica / Mestre em Estatística
2

Diagnóstico em modelos de regressão linear e não-linear com erros simétricos / Diagnostic in linear and nonlinear regression models with symmetrical errors

Reis, Sandra Santos dos, 1983- 24 August 2018 (has links)
Orientador: Mauricio Enrique Zevallos Herencia / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-24T02:03:22Z (GMT). No. of bitstreams: 1 Reis_SandraSantosdos_M.pdf: 1897835 bytes, checksum: 24e50267c694dbcb380ddcfc9d7bdace (MD5) Previous issue date: 2013 / Resumo: Neste trabalho discutimos a detecção de observações influentes em modelos simétricos lineares e não lineares. Em primeiro lugar é realizado um estudo de simulação para avaliar o desempenho de três métodos de estimação em dados gerados por quatro situações: sem observações influentes, com outliers na variável resposta, com observações influentes de média alavancagem e com observações influentes de alta alavancagem. São analisados dois métodos de máxima verossimilhança e um método robusto. Foram considerados modelos de regressão linear e não linear com erros logísticos tipo II e t-Student. Em segundo lugar é discutida detecção de observações influentes mediante a distância de Cook generalizada, a estatística de Peña e a estatística de Andrews-Pregibon. Em particular é discutida a conveniência de utilizar a metodologia de limiares para caracterizar uma observação como influente ou não influente, assim como o efeito da estimação de parâmetros na construção de limiares. Estas medidas foram aplicadas a conjuntos de dados reais e simulados considerando o ajuste de alguns modelos simétricos com uma adaptação no método de estimação scoring de Fisher / Abstract: We discuss the detection of influential observations in symmetrical linear and nonlinear regression models. First a simulation study is conducted to evaluate the performance of three estimation methods on data generated by four situations: without influential observations with outliers in the response variable, with influential observations average leverage and influential observations with high leverage. Two methods of maximum likelihood and robust method are analyzed. We considered linear and nonlinear regression models with logistic-II and Student-t errors. Secondly detection of influential observations by generalized Cook's distance, the statistic PeÃ?a and Andrews - Pregibon statistic is discussed. In particular the convenience of using the methodology to characterize a threshold observation as influential or not influential, as well as the effect of parameter estimation in the construction of thresholds is discussed. These measures were applied to sets of real and simulated data considering the fit of some symmetrical regression models with an adaptation estimation method of Fisher scoring / Mestrado / Estatistica / Mestra em Estatística
3

Quantile regression for mixed-effects models = Regressão quantílica para modelos de efeitos mistos / Regressão quantílica para modelos de efeitos mistos

Galarza Morales, Christian Eduardo, 1988- 27 August 2018 (has links)
Orientador: Víctor Hugo Lachos Dávila / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T06:40:31Z (GMT). No. of bitstreams: 1 GalarzaMorales_ChristianEduardo_M.pdf: 5076076 bytes, checksum: 0967f08c9ad75f9e7f5df339563ef75a (MD5) Previous issue date: 2015 / Resumo: Os dados longitudinais são frequentemente analisados usando modelos de efeitos mistos normais. Além disso, os métodos de estimação tradicionais baseiam-se em regressão na média da distribuição considerada, o que leva a estimação de parâmetros não robusta quando a distribuição do erro não é normal. Em comparação com a abordagem de regressão na média convencional, a regressão quantílica (RQ) pode caracterizar toda a distribuição condicional da variável de resposta e é mais robusta na presença de outliers e especificações erradas da distribuição do erro. Esta tese desenvolve uma abordagem baseada em verossimilhança para analisar modelos de RQ para dados longitudinais contínuos correlacionados através da distribuição Laplace assimétrica (DLA). Explorando a conveniente representação hierárquica da DLA, a nossa abordagem clássica segue a aproximação estocástica do algoritmo EM (SAEM) para derivar estimativas de máxima verossimilhança (MV) exatas dos efeitos fixos e componentes de variância em modelos lineares e não lineares de efeitos mistos. Nós avaliamos o desempenho do algoritmo em amostras finitas e as propriedades assintóticas das estimativas de MV através de experimentos empíricos e aplicações para quatro conjuntos de dados reais. Os algoritmos SAEMs propostos são implementados nos pacotes do R qrLMM() e qrNLMM() respectivamente / Abstract: Longitudinal data are frequently analyzed using normal mixed effects models. Moreover, the traditional estimation methods are based on mean regression, which leads to non-robust parameter estimation for non-normal error distributions. Compared to the conventional mean regression approach, quantile regression (QR) can characterize the entire conditional distribution of the outcome variable and is more robust to the presence of outliers and misspecification of the error distribution. This thesis develops a likelihood-based approach to analyzing QR models for correlated continuous longitudinal data via the asymmetric Laplace distribution (ALD). Exploiting the nice hierarchical representation of the ALD, our classical approach follows the stochastic Approximation of the EM (SAEM) algorithm for deriving exact maximum likelihood (ML) estimates of the fixed-effects and variance components in linear and nonlinear mixed effects models. We evaluate the finite sample performance of the algorithm and the asymptotic properties of the ML estimates through empirical experiments and applications to four real life datasets. The proposed SAEMs algorithms are implemented in the R packages qrLMM() and qrNLMM() respectively / Mestrado / Estatistica / Mestre em Estatística
4

Modelos não lineares sob a classe de distribuições misturas da escala skew-normal / Nonlinear models based on scale mixtures skew-normal distributions

Medina Garay, Aldo William 07 August 2010 (has links)
Orientadores: Victor Hugo Lachos Dávila, Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T04:06:26Z (GMT). No. of bitstreams: 1 MedinaGaray_AldoWilliam_M.pdf: 1389516 bytes, checksum: 2763869ea52e11ede3c860714ea0e75e (MD5) Previous issue date: 2010 / Resumo: Neste trabalho estudamos alguns aspectos de estimação e diagnóstico de influência global e local de modelos não lineares sob a classe de distribuição misturas da escala skew-normal, baseado na metodologia proposta por Cook (1986) e Poon & Poon (1999). Os modelos não lineares heteroscedásticos também são discutidos. Esta nova classe de modelos constitui uma generalização robusta dos modelos de regressão não linear simétricos, que têm como membros particulares distribuições com caudas pesadas, tais como skew-t, skew-slash, skew-normal contaminada, entre outras. A estimação dos parâmetros será obtida via o algoritmo EM proposto por Dempster et al. (1977). Estudos de testes de hipóteses são considerados utilizando as estatísticas de escore e da razão de verossimilhança, para testar a homogeneidade do parâmetro de escala. Propriedades das estatísticas do teste são investigadas através de simulações de Monte Carlo. Exemplos numéricos considerando dados reais e simulados são apresentados para ilustrar a metodologia desenvolvida / Abstrac: In this work, we studied some aspects of estimation and diagnostics on the global and local influence in nonlinear models under the class of scale mixtures of the skewnormal (SMSN) distribution, based on the methodology proposed by Cook (1986) e Poon & Poon (1999). Heteroscedastic nonlinear models are also discussed. This new class of models are a robust generalization of non-linear regression symmetrical models, which have as members individual distributions with heavy tails, such as skew-t, skew-slash, and skew-contaminated normal, among others. The parameter estimation will be obtained with the EM algorithm proposed by Dempster et al. (1977). Studies testing hypotheses are considered using the score statistics and the likelihood ratio test to test the homogeneity of scale parameter. Properties of test statistics are investigated through Monte Carlo simulations. Numerical examples considering real and simulated data are presented to illustrate the methodology / Mestrado / Métodos Estatísticos / Mestre em Estatística

Page generated in 0.1105 seconds