Spelling suggestions: "subject:"normalized cross correlation"" "subject:"normalized cross borrelation""
1 |
A Head-mounted Accelerometer System for Motion Classification of Personnel in Hazardous Work AreasMujumdar, Madhura 19 October 2015 (has links)
No description available.
|
2 |
Face pose estimation in monocular imagesShafi, Muhammad January 2010 (has links)
People use orientation of their faces to convey rich, inter-personal information. For example, a person will direct his face to indicate who the intended target of the conversation is. Similarly in a conversation, face orientation is a non-verbal cue to listener when to switch role and start speaking, and a nod indicates that a person has understands, or agrees with, what is being said. Further more, face pose estimation plays an important role in human-computer interaction, virtual reality applications, human behaviour analysis, pose-independent face recognition, driver s vigilance assessment, gaze estimation, etc. Robust face recognition has been a focus of research in computer vision community for more than two decades. Although substantial research has been done and numerous methods have been proposed for face recognition, there remain challenges in this field. One of these is face recognition under varying poses and that is why face pose estimation is still an important research area. In computer vision, face pose estimation is the process of inferring the face orientation from digital imagery. It requires a serious of image processing steps to transform a pixel-based representation of a human face into a high-level concept of direction. An ideal face pose estimator should be invariant to a variety of image-changing factors such as camera distortion, lighting condition, skin colour, projective geometry, facial hairs, facial expressions, presence of accessories like glasses and hats, etc. Face pose estimation has been a focus of research for about two decades and numerous research contributions have been presented in this field. Face pose estimation techniques in literature have still some shortcomings and limitations in terms of accuracy, applicability to monocular images, being autonomous, identity and lighting variations, image resolution variations, range of face motion, computational expense, presence of facial hairs, presence of accessories like glasses and hats, etc. These shortcomings of existing face pose estimation techniques motivated the research work presented in this thesis. The main focus of this research is to design and develop novel face pose estimation algorithms that improve automatic face pose estimation in terms of processing time, computational expense, and invariance to different conditions.
|
3 |
Neutron-Gamma Ray Discrimination Using Normalized Cross CorrelationJanuary 2015 (has links)
abstract: The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower decay of neutron pulses. Some of the well-known pulse shape discrimination techniques are charge comparison method, pulse gradient method and frequency gradient method. In the work presented here, we have applied a normalized cross correlation (NCC) approach to real neutron and gamma ray pulses produced by exposing CLYC scintillators to a mixed radiation environment generated by 137Cs, 22Na, 57Co and 252Cf/AmBe at different event rates. The cross correlation analysis produces distinctive results for measured neutron pulses and gamma ray pulses when they are cross correlated with reference neutron and/or gamma templates. NCC produces good separation between neutron and gamma rays at low (< 100 kHz) to mid event rate (< 200 kHz). However, the separation disappears at high event rate (> 200 kHz) because of pileup, noise and baseline shift. This is also confirmed by observing the pulse shape discrimination (PSD) plots and figure of merit (FOM) of NCC. FOM is close to 3, which is good, for low event rate but rolls off significantly along with the increase in the event rate and reaches 1 at high event rate. Future efforts are required to reduce the noise by using better hardware system, remove pileup and detect the NCC shapes of neutron and gamma rays using advanced techniques. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
|
4 |
Parallel Processing For Adaptive Optics Optical Coherence Tomography (AO-OCT) Image Registration Using GPUDo, Nhan Hieu 08 July 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Adaptive Optics Optical Coherence Tomography (AO-OCT) is a high-speed, high-resolution ophthalmic imaging technique offering detailed 3D analysis of retina structure in vivo. However, AO-OCT volume images are sensitive to involuntary eye movements that occur even during steady fixation and include tremor, drifts, and micro-saccades. To correct eye motion artifacts within a volume and to stabilize a sequence of volumes acquired of the same retina area, we propose a stripe-wise 3D image registration algorithm with phase correlation. In addition, using several ideas such as coarse-to-fine approach, spike noise filtering, pre-computation caching, and parallel processing on a GPU, our approach can register a volume of size 512 x 512 x 512 in less than 6 seconds, which is a 33x speedup as compared to an equivalent CPU version in MATLAB. Moreover, our 3D registration approach is reliable even in the presence of large motions (micro-saccades) that distort the volumes. Such motion was an obstacle for a previous en face approach based on 2D projected images. The thesis also investigates GPU implementations for 3D phase correlation and 2D normalized cross-correlation, which could be useful for other image processing algorithms.
|
5 |
Image-based Flight Data AcquisitionBassie, Abby L 04 May 2018 (has links)
Flight data recorders (FDRs) play a critical role in determining root causes of aviation mishaps. Some aircraft record limited amounts of information during flight (e.g. T-1A Jayhawk), while others have no FDR on board (B-52 Stratofortress). This study explores the use of image-based flight data acquisition to overcome a lack of available digitally-recorded FDR data. In this work, images of cockpit gauges were unwrapped vertically, and 2-D cross-correlation was performed on each image of the unwrapped gauge versus a template of the unwrapped gauge needle. Points of high correlation between the unwrapped gauge and needle template were used to locate the gauge needle, and interpolation and extrapolation were performed (based on locations of gauge tick marks) to quantify the value to which the gauge needle pointed. Results suggest that image-based flight data acquisition could provide key support to mishap investigations when aircraft lack sufficient FDR data.
|
6 |
PREDICTING GENERAL VAGAL NERVE ACTIVITY VIA THE DEVELOPMENT OF BIOPHYSICAL ARTIFICIAL INTELLIGENCELeRayah Michelle Neely-Brown (17593539) 11 December 2023 (has links)
<p dir="ltr">The vagus nerve (VN) is the tenth cranial nerve that mediates most of the parasympathetic functions of the autonomic nervous system. The axons of the human VN comprise a mix of unmyelinated and myelinated axons, where ~80% of the axons are unmyelinated C fibers (Havton et al., 2021). Understanding that most VN axons are unmyelinated, there is a need to map the pathways of these axons to and from organs to understand their function(s) and whether C fiber morphology or signaling characteristics yield insights into their functions. Developing a machine learning model that detects and predicts the morphology of VN single fiber action potentials based on select fiber characteristics, e.g., diameter, myelination, and position within the VN, allows us to more readily categorize the nerve fibers with respect to their function(s). Additionally, the features of this machine learning model could help inform peripheral neuromodulation devices that aim to restore, replace, or augment one or more specific functions of the VN that have been lost due to injury, disease, or developmental abnormalities.</p><p dir="ltr">We designed and trained four types of Multi-layer Perceptron Artificial Deep Neural Networks (MLP-ANN) with 10,000 rat abdominal vagal C-fibers simulated via the peripheral neural interface model ViNERS. We analyze the accuracy of each MLP-ANN’s SFAP predictions by conducting normalized cross-correlation and morphology analyses with the ViNERS C-fiber SFAP counterparts. Our results showed that our best MLP predicted over 94% of the C-fiber SFAPs with strong normalized cross-correlation coefficients of 0.7 through 1 with the ViNERS SFAPs. Overall, this novel tool can use a C-fiber’s biophysical characteristics (i.e., fiber diameter size, fiber position on the x/y axis, etc.) to predict C-fiber SFAP morphology.</p>
|
7 |
使用光束調整法與多張影像做相機效正與三維模型重建 / Using bundle adjustment for camera Calibration and 3D reconstruction from multiple images蔡政君, Tsai, Jeng Jiun Unknown Date (has links)
自動化三維建模需要準確的三維點座標,而三維點的位置則依賴高精度的對應點,因此對應點的尋找一直是此領域的研究議題,而使用稀疏光束調整法(SBA:Sparse Bundle Adjustment)來優化相機參數也是常用的作法,然而若三維點當中有少數幾個誤差較大的點,則稀疏光束調整法會受到很大的影響。我們採用多視角影像做依據,找出對應點座標及幾何關係,在改善對應點位置的步驟中,我們藉由位移三維點法向量來取得各種不同位置的三維補綴面(3D patch),並根據投影到影像上之補綴面的正規化相關匹配法(NCC:Normalized Cross Correlation)來改善對應點位置。利用這些改善過的點資訊,我們使用稀疏光束調整法來針對相機校正做進一步的優化,為了避免誤差較大的三維點影響到稀疏光束調整法的結果,我們使用穩健的計算方法來過濾這些三維點,藉由此方法來減少再投影誤差(reprojection error),最後產生較精準的相機參數,使用此參數我們可以自動化建出外型架構較接近真實物體的模型。 / Automated 3D modeling of the need for accurate 3D points, and location of the 3D points depends on the accuracy of corresponding points, so the search for corresponding points in this area has been a research topic, and the use of SBA(Sparse Bundle Adjustment) to optimize the camera parameters is also a common practice, however, if there are a few more error 3D points, the SBA will be greatly affected. In this paper, we establish the corresponding points and their geometry relationship from multi-view images. And the 3D patches are used to refine point positions. We translate the normal to get many patches, and project them into visible images. The NCC(Normalized Cross Correlation) values between patches in reference image and patches in visible image are used to estimate the best correspondence points. And they are used to get better camera parameters by SBA(sparse bundle adjustment). Furthermore, it is because that it usually exist outliers in the data observed, and they will influence the results by using SBA. So, we use our robust estimation method to resist the outliers. In our experiment, SBA is used to filter some outliers to reduce the reprojection error. After getting more precise camera parameters, we use them to reconstruct the 3D model more realistic.
|
8 |
Mitigating Congestion by Integrating Time Forecasting and Realtime Information Aggregation in Cellular NetworksChen, Kai 11 March 2011 (has links)
An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.
|
9 |
Zpracování obrazových sekvencí sítnice z fundus kamery / Processing of image sequences from fundus cameraKlimeš, Filip January 2015 (has links)
Cílem mé diplomové práce bylo navrhnout metodu analýzy retinálních sekvencí, která bude hodnotit kvalitu jednotlivých snímků. V teoretické části se také zabývám vlastnostmi retinálních sekvencí a způsobem registrace snímků z fundus kamery. V praktické části je implementována metoda hodnocení kvality snímků, která je otestována na reálných retinálních sekvencích a vyhodnocena její úspěšnost. Práce hodnotí i vliv této metody na registraci retinálních snímků.
|
Page generated in 0.1313 seconds